
Attila Csenki

Applications of Prolog

Download free books at

Download free ebooks at bookboon.com

2

Attila Csenki

Applications of Prolog

Download free ebooks at bookboon.com

3

Applications of Prolog
© 2009 Attila Csenki & Ventus Publishing ApS
ISBN 978-87-7681-514-1

To my wife Agnes who patiently endured me working on this book for most of my
spare time during last two years.

Download free ebooks at bookboon.com

Applications of Prolog

4

Contents

Contents

Preface 15

1 Enigma 1225: Rows are Columns 17
1.1 A Puzzle . 17
1.2 First Thoughts . 17
1.3 Symbolic Solutions . 18
1.4 Implementation Details . 20

1.4.1 Design Decisions . 20
1.4.2 Admissible Permutations . 21
1.4.3 Generating Symbolic Matrices . 21
1.4.4 Permuting Rows . 22
1.4.5 Transposing . 22
1.4.6 Most General Patterned Symbolic Matrices . 22
1.4.7 Distinct Rows . 24
1.4.8 Evaluating Patterns . 25
1.4.9 Computing Totals . 28
1.4.10 Complete Implementation . 28

1.5 Enhanced Implementation . 31
1.5.1 What is Wrong with the Present Implementation? . 31
1.5.2 Some Results from the Theory of Permutations . 32
1.5.3 Generating Representative Permutations . 35
1.5.4 Finishing Touches . 43

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

5

Contents

2 Blind Search 47
2.1 Digression on the Module System in Prolog . 47
2.2 Basic Search Problem . 49
2.3 Depth First Search . 52

2.3.1 Näıve Solution . 54
2.3.2 Incremental Development Using an Agenda . 54

2.4 Breadth First Search . 67
2.5 Bounded Depth First Search . 68
2.6 Iterative Deepening . 72
2.7 The Module blindsearches . 74
2.8 Application: A Loop Puzzle . 76

2.8.1 The Puzzle . 76

2.8.2 A ‘Hand-Knit’ Solution . 77
2.8.3 Project: Automating the Solution Process . 83

2.8.4 Project: Displaying the Board . 89
2.8.5 Complete Implementation . 91

2.8.6 Full Board Coverage . 91
2.8.7 Avoiding Multiple Solutions . 93

2.8.8 Variants of the Loop Puzzle . 95
2.9 Application: The Eight Puzzle . 99

2.9.1 The Puzzle . 99
2.9.2 Prolog Implementation . 100

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

6

Contents

3 Informed Search 103
3.1 The Network Search Problem with Costs . 103

3.1.1 Cost Measures . 104
3.1.2 The A–Algorithm . 105

3.1.3 Iterative Deepening A∗ and its ε–Admissible Version . 108
3.2 Case Study: The Eight Puzzle Revisited . 114

3.2.1 The Heuristics . 114
3.2.2 Prolog Implementation . 115

3.3 Project: Robot Navigation . 118
3.4 Project: The Shortest Route in a Maze . 121

3.4.1 Suggested Implementation Details . 123
3.5 Project: Moving a Knight . 128

4 Text Processing 133

4.1 Text Removal . 133
4.1.1 Practical Context . 133

4.1.2 Specification . 134

4.1.3 Implementation . 135
4.1.4 Using a Linux Shell Script . 139

4.1.5 Application: Removing Model Solutions . 143
4.2 Text Generation and Drawing with LATEX . 146

4.2.1 Cycloids . 146
4.2.2 Task . 147

4.2.3 Solution . 148
4.3 Exercises . 151

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

7

Contents

A Solutions of Selected Exercises 161

A.1 Chapter 1 Exercises . 161
A.2 Chapter 2 Exercises . 171

A.3 Chapter 3 Exercises . 186
A.4 Chapter 4 Exercises . 191

B Software 197

References 199

Index 201

Errata to Volume 1 203

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

8

List of Figures

List of Figures

1.1 A Feasible Solution . 18
1.2 Hand Computations for Pattern Evaluation . 27
1.3 Suggested Hand Computations for total/2 . 28
1.4 Generating Feasible Solutions by square/5 . 29
1.5 The Cycles τ1 and τ2 . 32
1.6 Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.12.) 40
1.7 Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.13.) 42
1.8 Suggested Hand Computations for split/4 . 45

2.1 A Network . 48
2.2 The File links.pl . 49
2.3 Fragment of the File df1.pl . 49
2.4 The Search Tree . 50
2.5 The Pruned Search Tree . 51
2.6 Depth First Search – The Conduit Model . 53
2.7 The File naive.pl . 54
2.8 The File df1.pl . 56
2.9 Illustrative Query for depth first/2 – First Version . 57
2.10 The File df2.pl . 58
2.11 Illustrative Query for depth first/2 – Second Version . 59
2.12 The New Network Component . 59
2.13 Hand Computations for the Query ?- depth first(s,g,Path). 61

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

9

List of Figures

p f g

2.14 The File df3.pl – Depth First with Closed Nodes and Open Paths 63
2.15 The File df4.pl – Depth First with Path Checking . 65
2.16 The File searchinfo.pl . 65
2.17 Interactive Session for depth first/4 – Path Checking . 66
2.18 A Network (see Exercise 2.4, p. 67) . 67
2.19 Breadth First . 68
2.20 The File bf.pl – Breadth First with Path Checking . 69
2.21 Interactive Session for breadth first/4 . 69
2.22 The File bdf.pl – Bounded Depth First (for Exercise 2.7) . 72
2.23 The File iterd.pl – Iterative Deepening . 73
2.24 Sample Session – Iterative Deepening . 74
2.25 Sample Session – Modified Iterative Deepening (for Exercise 2.8) 75

2.26 The File netsearch.pl (for Exercise 2.10) . 75
2.27 Sample Session – The Loop Puzzle . 78
2.28 The File loop puzzle1.pl . 79
2.29 Constructing a Solution of the Loop Puzzle . 80
2.30 The File hand knit.pl . 81
2.31 The File loop puzzle1a.pl . 83
2.32 The File automated.pl . 84
2.33 Constructing a Loop . 86
2.34 Running the Automated Implementation of the Loop Puzzle . 87
2.35 Semi-Automated Solution of the Loop Puzzle . 88
2.36 Session for Displaying the Board . 89
2.37 Illustrating Exercise 2.16 . 90
2.38 Illustrating Exercise 2.17 . 91
2.39 Solving the Puzzle Interactively. (See Exercise 2.18.) . 92
2.40 Illustrating Exercise 2.19 . 93
2.41 Some positions not visited . 94

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

10

List of Figures

2.42 All positions visited . 94
2.43 Solving the Loop Puzzle – Variant One . 97
2.44 Solving the Loop Puzzle – Variant Two . 98
2.45 An Eight Puzzle . 99
2.46 Solving the Eight Puzzle . 101

3.1 A Network with Costs . 103
3.2 Hand Computations: The Evolution of the Agenda for the A–Algorithm (from d to c in Fig 3.1) 107
3.3 An Interactive Session. (See Exercise 3.1.) . 110
3.4 A Directed Network. (See Exercise 3.2.) . 111
3.5 Adjacency matrix of the network in Fig. 3.4 . 111
3.6 Network for Exercise 3.3, Part (c) . 113
3.7 Calculating the Manhattan Distance between the tile arrangements in Fig. 2.45 114
3.8 Solving the Eight Puzzle by Heuristic Search . 116
3.9 Robot Navigation . 119
3.10 Maze Search . 122
3.11 Calculating the Euclidean Heuristic H1 . 123
3.12 Calculating the Alternative Heuristic H2 . 125
3.13 Search Graph for the Gates’ Position . 126
3.14 Sample Session: Moving a Knight . 129
3.15 The Knight Moves One Step . 131

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

11

List of Figures

4.1 Processing the File exam.tex . 134
4.2 The File with waters . 135
4.3 The File without waters . 136
4.4 Running the Shell Script sieve . 140
4.5 Another Run of the Shell Script sieve . 142
4.6 The File part sln.tex . 143
4.7 Structure of the Printed Exam Script with Solutions . 144
4.8 The File part.tex . 145

4.9 Running the Shell Script sieve . 145
4.10 Drawing a Cycloid (φ = π/2) . 146
4.11 Prolate Cycloid Drawn with \writecurve from Fig. 4.14 (r = 5, a = 8, 3.5 revs) 146
4.12 Curtate Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 3, 3.5 revs) 147
4.13 Common Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 5, 3.5 revs) 147
4.14 Generating the LATEX Command \writecurve with define command/4 148
4.15 ‘Quarter’ Cycloid Drawn with \writecurve (r = 10, a = 4, 1/4 revs) 151
4.16 Generating the LATEX Command \defcirc with circ command/4 151
4.17 Generating the LATEX Command \defcirc with circ command/4 152
4.18 Generating the LATEX Command \defcirc with imp circ command/4 153
4.19 Polygon Drawn with \halfcirc . 154
4.20 Logarithmic Spiral Drawn with \spiral . 157
4.21 Growing Spirals . 158
4.22 The File spirals . 158
4.23 The File spirals.tex . 159
4.24 Running the Shell Script curves . 160

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

12

List of Figures

A.1 Hand Computations for total/2 . 164
A.2 Ferrers Diagrams and their Prolog Representations . 166
A.3 Creating Distinct Temporary Predicate Names . 167
A.4 Annotated Hand Computations for split/4 . 170
A.5 Hand Computations for the Query ?- depth first(d,c). 172
A.6 Interactive Session for the Query ?- depth first(d,c). 173
A.7 Hand Computations for the Query ?- depth first(u,c). 173
A.8 Tree for Finding Successor Nodes in the New Component . 173
A.9 Interactive Session for the Query ?- depth first(u,c). 174
A.10 Sample Session for depth first/4 . 176
A.11 Definition of extend path dl/3 . 177
A.12 New Clauses for dfs loop/4 . 178
A.13 Updating of the Agenda by dfs loop/4 . 178
A.14 Clauses Added to bf.pl . 182
A.15 Definition of b dfs loop/5 (Exercise 2.7) . 183
A.16 Modified Version of iterd.pl (Exercise 2.8) . 184
A.17 Automated Search . 188
A.18 Hand Computations: The Evolution of the Agenda for the A–Algorithm (from node 1 to node

10 in Fig 3.4) . 189
A.19 Interactive Session for Searching the Network in Fig. 3.6 . 190

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

13

List of Tables

List of Tables

1.1 CPU times for Various Board Sizes . 31
1.2 A Ferrers Diagram . 36
1.3 Suggested Examples for Exercise 1.10 . 38

2.1 CPU Times (in Seconds) for the Eight Puzzle with Blind Search 100

3.1 Straight Line Distances between Nodes in Fig. 3.1 . 104
3.2 Node Co-ordinates in the Network in Fig. 3.4 . 110
3.3 Node Co-ordinates in the Network in Fig. 3.6 . 113
3.4 CPU Times (in Seconds) for the Eight Puzzle with Heuristic Search 117

A.1 Partitions . 165
A.2 Example Paths and Prolog Implementations – Case One . 175
A.3 Example Paths and Prolog Implementations – Case Two . 176
A.4 Values of H . 187
A.5 Distances between Nodes (Edge Lengths) in Fig. 3.4 . 187
A.6 Results for the Eight Puzzle (Hill Climbing and Best First) . 190

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

14

List of Tables

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

15

Preface

Preface

This book is the second volume by the author on Prolog programming and its applications written for Ventus.
Whereas in the first book [9], specific Prolog programming techniques were explained, in this volume we discuss
some areas where Prolog can be fruitfully employed.

Both books owe their existence to the recognition that the higher educational system (in the UK) does not
offer enough opportunities for students to experience the satisfaction associated with successfully completing
a technical task. In the writer’s opinion, the learning experience of today’s average student is dominated too
much by assessments.

The book comprises four chapters, the first three of them are devoted to Prolog in Artificial Intelligence
(AI). The last one is on text processing using Prolog with LATEX in mind.

The first chapter solves an intriguing AI puzzle which was first published in the New Scientist magazine [1] in
2003. The Prolog solution presented here combines problem specific knowledge using Finite Mathematics with
the well-know AI technique ‘generate-and-test’. Even though this chapter did not emanate from my teaching
activities, the presentation follows a well-tested pattern: the problem is broken down into manageable and
identifiable subproblems which then are more or less readily implemented in Prolog. Many interesting hurdles
are identified and solved thereby. The availability of unification as a pattern matching tool makes Prolog
uniquely suitable for solving such problems. This first chapter is an adaptation of work reported in [7]. Further
recent developments on solving this problem can be found in [4].

The second and third chapters are respectively devoted to blind search and informed search. The material
presented in them can be used in lectures to teach Prolog for AI as well as in AI lectures themselves. I have
tried to compile a varied and interesting mixture of applications most of which won’t be available anywhere
else. Some of the problems considered here served over the years in my lectures as coursework material, though,
for various reasons, the discussion is more thorough here.

The fourth chapter is the least conventional one for a Prolog book. It is in two parts.

1. A tool is developed in Prolog for manipulating LATEX files.

2. Prolog is used to generate LATEX commands for drawing parametric curves in documents written in LATEX.

I also explain here how an SWI-Prolog program can be embedded into a Linux shell script, removing thereby
the need for the user to deal with Prolog directly. This results in applications of direct practical interest.

For the maximum benefit (and fun) readers should work through parts of this book interactively with
SWI-Prolog. I have tried to retain the experimental and exploratory style of the first volume [9] even though
sometimes digression to more theoretical topics was unavoidable.

There are 54 exercises in this book, 32 of them are solved in Appendix A. The last chapter is somewhat
of an exception since there the exercises themselves are the main vehicle for conveying the subject material.
Therefore, detailed sample solutions are provided for 6 of the 7 exercises in that chapter.

Download free ebooks at bookboon.com

Applications of Prolog

16

Preface

The associated software (Prolog sorces, Linux shell scripts, data files) listed in Appendix B is freely available
from the Ventus website. All three systems used here (Linux, SWI-Prolog, LATEX) are freely available on the
Internet.

Bradford, Attila Csenki
October 2009 a.csenki@bradford.ac.uk

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

17

Enigma 1225: Rows are Columns

Chapter 1

Enigma 1225: Rows are Columns1

1.1 A Puzzle

A regular feature in the New Scientist magazine is Enigma, a weekly puzzle entry which readers are invited to
solve. In the 8 February 2003 issue [1] the following puzzle was published.

First, draw a chessboard. Now number the horizontal rows 1, 2, ..., 8, from top to bottom and
number the vertical columns 1, 2, ..., 8, from left to right.You have to put a whole number in each of
the sixty-four squares, subject to the following:

1. No two rows are exactly the same.

2. Each row is equal to one of the columns, but not to the column with the same number as the
row.

3. If N is the largest number you write on the chessboard then you must also write 1, 2, ..., N − 1
on the chessboard.

The sum of the sixty-four numbers you write on the chessboard is called your total. What is the
largest total you can obtain?

We are going to solve this puzzle here using Prolog. The solution to be described will illustrate two techniques:
unification and generate-and-test.

Unification is a built-in pattern matching mechanism in Prolog which has been used in [9]; for example, the
difference list technique essentially depended on it. For our approach here, unification will again be crucial in
that the proposed method of solution hinges on the availability of built-in unification. It will be used as a kind
of concise symbolic pattern generating facility without which the current approach wouldn’t be viable.

Generate-and-test is easily implemented in Prolog. Prolog’s backtracking mechanism is used to generate can-
didate solutions to the problem which then are tested to see whether certain of the problem-specific constraints
are satisfied.

1.2 First Thoughts

Fig. 1.1 shows a board arrangement with all required constraints satisfied. It is seen that the first requirement

1This chapter is based on [7]. The author thankfully acknowledges the permission by Elsevier to republish the material here.

Download free ebooks at bookboon.com

Applications of Prolog

18

Enigma 1225: Rows are Columns

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

3 1 3 6 6 6 6 6

3 3 1 6 6 6 6 6

1 3 3 6 6 6 6 6

6 6 6 4 5 2 5 4

6 6 6 4 4 5 2 5

6 6 6 5 4 4 5 2

6 6 6 2 5 4 4 5

6 6 6 5 2 5 4 4

Figure 1.1: A Feasible Solution

is satisfied since the rows are all distinct. The second condition is also seen to hold whereby rows and columns
are interrelated in the following fashion:

Column 1 2 3 4 5 6 7 8
Row 2 3 1 5 6 7 8 4

We use the permutation

π =

(
1 2 3 4 5 6 7 8
2 3 1 5 6 7 8 4

)
(1.1)

to denote the corresponding column–to–row transformation. The board also satisfies the latter part of the second
condition since no row is mapped to a column in the same position. In terms of permutations, this requirement
implies that no entry remains fixed; these are those permutations which in our context are permissible. 2 The
third condition is obviously also satisfied with N = 6. The board’s total is 301, not the maximum, which, as
we shall see later, is 544.

1.3 Symbolic Solutions

The solution scheme described below in i–v is based on first generating all feasible solutions (an example of
which was seen in Sect. 1.2) and then choosing a one with the maximum total.

i. Take an admissible permutation, such as π in (1.1).

ii. Find an 8 × 8 matrix with symbolic entries whose rows and columns are interrelated by the permutation

2Such permutations are called derangements ([3], p. 73).

Download free ebooks at bookboon.com

Applications of Prolog

19

Enigma 1225: Rows are Columns

in i. As an example, let us consider for the permutation π two such matrices, M1 and M2, with

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X3 X1 X3 X6 X6 X6 X6 X6

X3 X3 X1 X6 X6 X6 X6 X6

X1 X3 X3 X6 X6 X6 X6 X6

X6 X6 X6 X4 X5 X2 X5 X4

X6 X6 X6 X4 X4 X5 X2 X5

X6 X6 X6 X5 X4 X4 X5 X2

X6 X6 X6 X2 X5 X4 X4 X5

X6 X6 X6 X5 X2 X5 X4 X4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y3 Y1 Y3 Y1 Y1 Y1 Y1 Y1

Y3 Y3 Y1 Y1 Y1 Y1 Y1 Y1

Y1 Y3 Y3 Y1 Y1 Y1 Y1 Y1

Y1 Y1 Y1 Y4 Y5 Y2 Y5 Y4

Y1 Y1 Y1 Y4 Y4 Y5 Y2 Y5

Y1 Y1 Y1 Y5 Y4 Y4 Y5 Y2

Y1 Y1 Y1 Y2 Y5 Y4 Y4 Y5

Y1 Y1 Y1 Y5 Y2 Y5 Y4 Y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1 and M2 both satisfy conditions 1 and 2. We also observe that the pattern of M2 may be obtained
from that of M1 by specialization (by matching the variables X1 and X6). Thus, any total achievable for
M2 is also achievable for M1. For any given permissible permutation, we can therefore concentrate on
the most general pattern of variables, M. (We term a pattern of variables most general if it cannot be
obtained by specialization from a more general one.) All this is reminiscent of ‘unification’ and the ‘most
general unifier’, and we will indeed be using Prolog’s unification mechanism in this step.

iii. Verify condition 1 for the symbolic matrix M. 3 Once this test is passed, we are sure that also the latter
part of condition 2 is satisfied. 4

iv. We now evaluate the pattern M. If N symbols have been used in M, assign the values 1, ..., N to them

3This test is necessary since at this stage a matrix may have been generated failing to satisfy condition 1 as is illustrated by the
(admissible) permutation

ρ =

„
1 2 3 4 5 6 7 8
2 3 1 5 4 7 8 6

«
(1.2)

and the corresponding most general matrix M3:

M3 =

2
6666666664

Z4 Z1 Z4 Z9 Z9 Z5 Z6 Z7

Z4 Z4 Z1 Z9 Z9 Z7 Z5 Z6

Z1 Z4 Z4 Z9 Z9 Z6 Z7 Z5

Z9 Z9 Z9 Z3 Z3 Z10 Z10 Z10

Z9 Z9 Z9 Z3 Z3 Z10 Z10 Z10

Z7 Z6 Z5 Z10 Z10 Z8 Z2 Z8

Z5 Z7 Z6 Z10 Z10 Z8 Z8 Z2

Z6 Z5 Z7 Z10 Z10 Z2 Z8 Z8

3
7777777775

4Were it not so, there would exist a row and a column with the same index such that the two were identical. However, this row
will be identical (by way of the admissible permutation) to some other column too. Hence two columns and therefore also two rows
would be identical, thus failing the test.

Download free ebooks at bookboon.com

Applications of Prolog

20

Enigma 1225: Rows are Columns

in reverse order by first assigning N to the most frequently occurring symbol, N − 1 to the second most
frequently occurring symbol etc. The total thus achieved will be a maximum for the given pattern M.

v. The problem is finally solved by generating and evaluating all patterns according to i–iv and selecting a
one with the maximum total.

1.4 Implementation Details

1.4.1 Design Decisions

The original formulation from the New Scientist uses a chessboard but the problem can be equally set with
a square board of any size. In our implementation, we shall allow for any board size since this will allow the
limitations of the method employed to be explored.

We write matrices in Prolog as lists of their rows which themselves are lists. Permutations will be represented
by the list of the bottom entries of their two-line representation; thus, [2, 3, 1, 5, 6, 7, 8, 4] stands for
π in (1.1).

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

21

Enigma 1225: Rows are Columns

1.4.2 Admissible Permutations

First, we want to generate all permutations of a list. Let us assume that we want to do this by the predicate
permute(+List,-Perm) and let us see how List = [1, 2, 3, 4] might be permuted. A permuted list, Perm
= [3, 4, 1, 2] say, may be obtained by

• Removing from List the entry E = 3 , leaving the reduced list
R = [1, 2, 4]

• Permuting the reduced list R to get P = [4, 1, 2]

• Assembling the permuted list as [E|P] = [3, 4, 1, 2] .

Lists with a single entry are left unchanged. This gives rise to the definition

permute([X],[X]).

permute(L,[E|P]) :- remove_one(L,E,R), permute(R,P).

with the predicate remove one(+List,?Entry,?Reduced) defined by

remove_one([H|T],H,T).

remove_one([H|T],E,[H|L]) :- remove_one(T,E,L).

(Here we remove either the head or an entry from the tail.) For a permutation to be admissible, all entries must
have changed position. We implement this by

admissible(L,P) :- permute(L,P), all_changed(L,P).

all_changed([X],[Y]) :- X ¯ Y.

all_changed([H1|T1],[H2|T2]) :- H1 ¯ H2, all_changed(T1,T2).

Exercise 1.1. Provide an alternative definition of remove one/3 by using one clause and append/3 . �

1.4.3 Generating Symbolic Matrices

To generate a list of N unbound variables, L , we use var list(+N,-L) which is defined in terms of length(-L,+N)
by

var_list(N,L) :- length(L,N).

(See [9, p. 110, footnote 15].) Matrices with distinct symbolic entries may now be produced by mapping; for
example, a 3 × 2 matrix is obtained by

?- maplist(var list,[2,2,2],M).

M = [[_G370, _G373], [_G379, _G382], [_G388, _G391]]

Exercise 1.2. Use the above idea to define var matrix(+Size,-M) for generating a square symbolic matrix
of any size. �

Download free ebooks at bookboon.com

Applications of Prolog

22

Enigma 1225: Rows are Columns

1.4.4 Permuting Rows

This is accomplished by list permute(+Perm,+L,-P) as indicated below.

?- var matrix(3, M), list permute([3,1,2], M, P),

write matrix(M), nl, write matrix(P).

[_G779, _G782, _G785]

[_G791, _G794, _G797]

[_G803, _G806, _G809]

[_G803, _G806, _G809]

[_G779, _G782, _G785]

[_G791, _G794, _G797]

(The permutation Perm establishes a correspondence between the entries of P and those of L .)

Exercise 1.3. Define the predicate list permute/3 by recursion, using nth1/3 from [9, p. 107]. �

1.4.5 Transposing

This will be accomplished by transpose(+M,-T) .

?- maplist(var list,[2,2,2], M), transpose(M, T),

write_matrix(M), nl, write matrix(T).

[_G779, _G782]

[_G788, _G791]

[_G797, _G800]

[_G779, _G788, _G797]

[_G782, _G791, _G800]

Exercise 1.4. Use maplist/3 to define transpose/2 . Allow for any not necessarily square matrix as
indicated above.

Hint. First define a predicate col(+Matrix,+N,-Column) for returning the N th column of a matrix. �

1.4.6 Most General Patterned Symbolic Matrices

It is now that Prolog shows its true strength: we use unification to generate symbolic square matrices with
certain patterns.5 For example, we may produce a 3 × 3 symmetric matrix thus

?- var matrix(3, M), transpose(M, M), write matrix(M).

[_G535, _G538, _G541]

[_G538, _G550, _G553]

[_G541, _G553, _G565]

5Trying to produce the results in this section by a programming language without built-in unification will be a much more
involved exercise.

Download free ebooks at bookboon.com

Applications of Prolog

23

Enigma 1225: Rows are Columns

More importantly, we are now in a position to produce symbolic matrices with prescribed patterns. For
example, below we generate the most general 3 × 3 matrix whose rows and columns are interrelated by the
permutation (

1 2 3
3 1 2

)
?- var matrix(3, M), list permute([3,1,2], M, P),

transpose(P, M), write_matrix(M).

[_G748, _G748, _G754]

[_G754, _G748, _G748]

[_G748, _G754, _G748]

Unification is again seen to play a crucial rôle here as M is declared to be the transpose of P :

• transpose/2 receives in its first argument the Prolog term for P .

• The term for the transpose of P is returned in the second argument of transpose/2 .

• This then is unified with the term for M thereby producing the intended pattern.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

24

Enigma 1225: Rows are Columns

1.4.7 Distinct Rows

We want to test whether all rows of a matrix with symbolic entries are distinct. Matrices are lists, we therefore
need to test for distinctness of list entries which are Prolog terms. The matrix [[A, B], [C, D]] should pass
the test, whereas [[A, B], [A, B]] should not. The negation of the unification operator (\=/2) cannot tell
apart the rows of the first matrix; we need here a ‘stronger’ (i. e. more specialized) notion of equality as
defined by the term equivalence operator ==/2 and its negation, \==/2 . (See inset overleaf.) Thus, using \==/2
will allow the rows of the former matrix to be recognized as different, whereas those of the latter are verified
identical.

?- [A, B] \== [C, D].

A = _G240

B = _G243

C = _G246

D = _G249

Yes

?- [A, B] \== [A, B].

No

Built-in Predicates: ==/2 and \==/2

These two predicates are used to test for term ’equivalence’ and its negation,
respectively. Two terms are equivalent if there exists a term to which both
of them have been bound prior to the invocation of ==/2 . For example, the
query

?- X = u, g(X,V) = Y, f(h(g(u,V)),Y) == f(h(Y),g(X,V)).

X = u

V = G448

Y = g(u, G448)

Yes

succeeds since both sides have been bound (by prior unification) to the term
f(h(g(u,V)),g(u,V)) . However, the query

?- f(h(g(u,V)),Y) == f(h(Y),g(X,V)).

No

fails even though the two terms are unifiable:

?- f(h(g(u,V)),Y) = f(h(Y),g(X,V)).

V = G325

Y = g(u, G325)

X = u

Yes

Exercise 1.5. Use \==/2 to define a predicate distinct/1 for testing the distinctness of entries of a list
as discussed above. �

Download free ebooks at bookboon.com

Applications of Prolog

25

Enigma 1225: Rows are Columns

1.4.8 Evaluating Patterns

Given a patterned symbolic matrix, we want to sort the list of its entries according to their frequencies of
occurrence and assign the rank order to each. For example, in the matrix M from the second query in Sect. 1.4.6,
p. 22, the entry G748 occurs six times while G754 occurs thrice. Therefore, as shown below, G754 and G748
will be assigned the values 1 and 2 respectively.

?- var matrix(3, M), list permute([3,1,2], M, P),

transpose(P, M), eval matrix(M,Freq), write matrix(M).

[2, 2, 1]

[1, 2, 2]

[2, 1, 2]

Freq = [(3, 1), (6, 2)]

This shall be accomplished by the predicate eval matrix(?M,-Freq) ; it expects a symbolic matrix M in its first
argument which then is unified with an integer matrix whose each entry will be the rank order of the frequency
of the corresponding symbolic entry. The second argument Freq is unified with the list of frequencies for each
number in the matrix as indicated above.

The hand computations in Fig. 1.2 on p. 27 indicate the steps involved in implementing eval matrix/2 .

1© Produce the list of matrix entries by flatten(+Matrix,-Entries) .

2© Discard multiple occurrences by setof(E,member(E,+Entries),-Set) .

3© Use maplist(count var(+Entries),+Set,-Multiplicities) to count how many times each variable
occurs in the matrix.

Exercise 1.6. Define the predicate count var(+VarList,+Var,-Num) . It will behave as follows.

?- count var([A, B, A, C, B, A], B,N).

N = 2

�

4© Use zip(+Multiplicities,+Set,-Frequencies) to obtain the list of matrix entry frequencies by zipping
the lists produced in 2© and 3©.

Exercise 1.7. Define the predicate zip/3 . It should behave as follows.

?- zip([1,2,3],[a,b,c],L).

L = [(1, a), (2, b), (3, c)]

�

5© Use sort(+Frequencies,-FreqSorted) (Prolog’s built-in sort/2) to sort the pairs from 4©. Tuples with
less frequent matrix entries will precede those with more frequent ones.

6© Use maplist(snd,+FreqSorted,-VarsSorted) to retain the tuples’ second entries only. We get a com-
plete list of matrix entries, with no multiple copies, featuring in the rank order of their frequencies. snd/2
extracts the second entry of a 2–tuple and is defined by

Download free ebooks at bookboon.com

Applications of Prolog

26

Enigma 1225: Rows are Columns

snd((_,X),X).

7© Use length(+VarsSorted,-NVars) to count the number of distinct matrix entries.

8© Use from to/3 to generate the list of integers [1, ..., NVars] . (The predicate from to/3 is known
from [9, p. 17].)

9© Unify each variable in VarsSorted with the rank order of its frequency. A single call to
from to(1,+NVars,?VarsSorted) will accomplish both steps, 8© and 9©. The effect of this call will also
be that

• The initial (input) matrix will be bound to the integer matrix of frequency ranks. This will form the
first output of eval matrix/2 .

• FreqSorted will be bound to the list of frequency pairs, forming the second output of eval matrix/2 .

The complete definition of eval matrix/2 , now a mere sequencing of clauses from 1©– 9©, will be found in
the source file enigma.pl.

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

27

Enigma 1225: Rows are Columns

The predicate eval matrix/2 has been defined in a style reminiscent of that used in functional programming. (The
predicates maplist/3 , zip/3 and snd/2 have indeed direct analogues in Haskell [30].) In [24], Parker espouses the virtues of
this style for Prolog and calls it the ‘stream data analysis paradigm’. Fig. 1.2 corresponds to what is called in [24] a ‘dataflow
diagram’ or ‘Henderson diagram’.

1©
�� ��

��
�

� 2©
��

����������������

�� �

� 3©
��

����������

��

�

�

�

4©
�� ��

5©
��

6©
�� ��

�
�

���������������

7©
��

8©
�� ��

�

�

��

9©
��

,

Figure 1.2: Hand Computations for Pattern Evaluation

Download free ebooks at bookboon.com

Applications of Prolog

28

Enigma 1225: Rows are Columns

total([(1,10),(2,100),(3,1000)], Total) ��

total([(1,10),(2,100),(3,1000)], 0, Total) ��

total([(2,100),(3,1000)], 10, Total) ��

total([(3,1000)], 210, Total) �� total([], 3210, Total) ��

Total = 3210 �� success

Figure 1.3: Suggested Hand Computations for total/2

1.4.9 Computing Totals

Exercise 1.8. For the computation of the matrix total we shall need a predicate total(+IntPairs,-Total)
which should sum the product of paired entries as exemplified below.

?- total([(1,10),(2,100),(3,1000)],Total).

Total = 3210

Define total/2 by the accumulator technique along the hand computations shown in Fig. 1.3. �

1.4.10 Complete Implementation

In (P-1.1), we show the definition of square/5 which has been assembled from the predicates in Sects. 1.4.2–
1.4.9.

Prolog Code P-1.1: Definition of square/5

1 square(Size,M,Total,Freq,Perm) :- var_matrix(Size,M),

2 from_to(1,Size,One_to_Size),

3 admissible(One_to_Size,Perm),

4 list_permute(Perm,M,P),

5 transpose(P,M),

6 distinct(M),

7 eval_matrix(M,Freq),

8 total(Freq,Total).

square/5 may be used to search for feasible solutions as shown by the query in Fig. 1.4 for a 4 × 4 board.
We know that all boards with the maximum total will be amongst those generated by the current process.
Therefore, the largest of all totals thus generated will be the maximum total. We use setof/3 to obtain the
sorted list of all totals generated (without duplicates) and select the maximum value by the built-in predicate
last/2 :6

6There is some inconsistency between versions of SWI–Prolog here. Version 3.4.5 is used in the query below, but, the order of
the arguments in last/2 will have to be reversed if using version 5.2.7.

Download free ebooks at bookboon.com

Applications of Prolog

29

Enigma 1225: Rows are Columns

�

�

�

�

?- square(4, M,Total,Freq,Perm), write matrix(M).

[1, 1, 2, 3]

[1, 1, 3, 2]

[3, 2, 4, 4]

[2, 3, 4, 4]

Total = 40

Freq = [(4, 1), (4, 2), (4, 3), (4, 4)]

Perm = [2, 1, 4, 3] ;

[1, 2, 2, 1]

[1, 1, 2, 2]

[2, 1, 1, 2]

[2, 2, 1, 1]

Total = 24

Freq = [(8, 1), (8, 2)]

Perm = [2, 3, 4, 1] ;

...

Figure 1.4: Generating Feasible Solutions by square/5

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

30

Enigma 1225: Rows are Columns

?- setof(Tot, M^ Freq^ Perm^square(8, M, Tot, Freq, Perm),Tots),

last(Max,Tots).

Tots = [160, 244, 288, 301, 400, 544]

Max = 544

We now know that the maximum total is 544 and may find a board with that total (and the corresponding
permutation) by

?- square(8, M,544, ,Perm), write imatrix(M).

[1 1 2 3 4 5 6 7]

[1 1 3 2 5 4 7 6]

[3 2 8 8 9 10 11 12]

[2 3 8 8 10 9 12 11]

[5 4 10 9 13 13 14 15]

[4 5 9 10 13 13 15 14]

[7 6 12 11 15 14 16 16]

[6 7 11 12 14 15 16 16]

Perm = [2, 1, 4, 3, 6, 5, 8, 7]

Exercise 1.9. Define the predicate write imatrix/1 for displaying on the terminal an integer matrix with
non-negative entries, right justified. In your definition, you should use writef(+Format,+Arguments) (Prolog’s
formatted write); see inset. The built-in predicates concat atom/2 [9, p. 126] and int to atom/2 (see inset)
may be used to construct writef ’s first argument. �

Built-in Predicate: writef(+Format,+Arguments)

This is one of Prolog’s predicates for formatted write . Arguments is a list
whose entries are displayed on the terminal according to the atom Format .
Example:

?- writef(’[%8r%8r%8r]’,[12, 345, 6789]).

[12 345 6789]

displays the list [12, 345, 6789] with its entries right justified, each occupying

up to eight digits. Consult the manual [33] for the options available for Format .

Built-in Predicate: int to atom(+Int,-Atom)

Unifies Atom with the ASCII representation of Int . Example:

?- int to atom(1953,A).

A = ’1953’

Download free ebooks at bookboon.com

Applications of Prolog

31

Enigma 1225: Rows are Columns

Size 3 4 5 6 7 8 9
CPU Seconds 0.00 0.06 0.11 2.03 15.37 209.59 3,334.14

Table 1.1: CPU times for Various Board Sizes

1.5 Enhanced Implementation

1.5.1 What is Wrong with the Present Implementation?

The implementation obtained in Sect. 1.4.10 has serious limitations. Table 1.1 shows the CPU times needed for
solving the puzzle for up to size 9 on a 300 MHz PC. The size of the original puzzle seems to be the practical
limit of what can be solved by this method.7 Table 1.1 indicates that the computing time increases roughly with
the factorial of Size. This means for the original puzzle that 8! = 40, 320 permutations have to be generated
of which 14, 833 will be admissible.8 Each of these will give rise to a patterned symbolic matrix, each to be
tested by distinct/1 . The number of patterned matrices passing this test is 13, 713.9 All of them are then
evaluated, resulting in a list with 13, 713 entries. After removing duplicates with setof/3 , we end up with a
list of just six values!

There is obviously a great deal of duplication of effort here.
To reduce the number of permutations to be considered, we are going to introduce in the next section

a partitioning of the set of all permutations into subsets, called types, such that permutations of the same
type will share certain pertinent properties. More precisely, each of the following properties will be such that
permutations of the same type either all have it or none has it.10

• Being admissible,

• For admissible permutations, the corresponding most general symbolic pattern having distinct rows.

Furthermore,

• For permutations of the same type, the corresponding most general symbolic pattern will evaluate to the
same maximum total.

7There is another problem for larger sizes which could be overcome, however. For sizes exceeding 9, insufficient memory will be
available for using setof/3 to collect the values of total. To remedy the situation, we could instead calculate the maximum total
in an incremental fashion by using, for instance, assert/1 to save in the database the most recent maximum value of total.

8The number of admissible permutations can be found by the query

?- bagof(A,admissible([1,2,3,4,5,6,7,8], A), As), length(As,L).

L = 14833

Alternatively, the number of admissible permutations of {1, . . . , n}, an, may be calculated by the recurrence relation

an = n!− (f1n + f2n + . . . + f(n−1)n + 1)

where
fin =

“n

i

”
an−i

denotes the number of permutations of {1, . . . , n} which leave exactly i entries fixed. Start with a1 = 0. Other ways of calculating
an may be found in [3, p. 73].

9We find this by the query

?- bagof(Tot, M^ Freq^ Perm^square(8, M, Tot, Freq, Perm), Tots), length(Tots,L).

L = 13713

The matrix M3 in footnote 3, p. 19, is an example for a pattern which will be tested by distinct/1 and fail.
10We may call them therefore type-properties.

Download free ebooks at bookboon.com

Applications of Prolog

32

Enigma 1225: Rows are Columns

�

��

5

7

2
�

�

��

�

6

3

4

8

1

Figure 1.5: The Cycles τ1 and τ2

It will therefore suffice to concentrate on a representative permutation from each type (Sect. 1.5.3). Before
elaborating on this idea, however, we first review some results from the Theory of Permutations [3].

1.5.2 Some Results from the Theory of Permutations

The Cycle Notation for Permutations

Let us look at the permutation

τ =

(
1 2 3 4 5 6 7 8
6 5 4 8 7 3 2 1

)

It can be thought of as the composition of two cycles τ1 and τ2 with

τ1 =

(
2 5 7
5 7 2

)
, τ2 =

(
1 3 4 6 8
6 4 8 3 1

)

It is seen from Fig. 1.5 that both cycles (as the name implies) effect a cyclical interchange on a subset of
{1, . . . , 8}; these subsets form a partition of {1, . . . , 8} = {2, 5, 7}∪{1, 3, 4, 6, 8}. We may use the cycle notation
to denote cycles: τ1 = (5 7 2), τ2 = (6 3 4 8 1). The permutation τ is said to be the product of the cycles τ1

and τ2,

τ = (5 7 2)(6 3 4 8 1) (1.3)

As the individual cycles of a product operate on disjoint sets, the order in which the cycles are listed is
immaterial, though shorter cycles are usually written before longer ones. Thus τ = (6 3 4 8 1)(5 7 2). The
entries of a cycle in the cycle notation may be rotated [9]; for example, (3 4 8 1 6) still refers to the cycle τ2.

Another example of a permutation in the cycle notation is

ρ = (4 5)(1 2 3)(6 7 8) (1.4)

from (1.2) on p. 19; it is the product of three cycles.

Finally, permissible permutations (so-called derangements) are now easily recognized as those without a
1–cycle.

Download free ebooks at bookboon.com

Applications of Prolog

33

Enigma 1225: Rows are Columns

Types

The permutation τ in (1.3) is the product of two cycles, τ1 and τ2, of length 3 and 5, respectively. Therefore, τ
is said to be of type [3151].11 π in (1.1) is another permutation of the same type, since

π = (3 1 2)(7 8 4 5 6) (1.5)

On the other hand, ρ in (1.4) is seen to be of type [2132].
We note in passing that each type corresponds to a partition of the number of elements permuted. A

partition of a positive whole number is its representation as the sum of some positive whole numbers. For
example, the above types define the partitions 8 = 3 + 5 and 8 = 2 + 3 + 3.

Types in our context become significant by the following

Observation. Column–to–row transformations of the same type give rise to most general patterned
symbolic matrices which are essentially the same in that they can be transformed into each other
by appropriate row–to–row and column–to–column rearrangements.

We won’t prove this result here but illustrate it by an example. To determine the most general symbolic matrix
for τ from that of π, proceed as follows.

1. Write the permutations π and τ in cycle notation (as in (1.5) and (1.3)) and place them above each other
as shown below.

π = (3
↓

τ = (5

1
↓
7

2)
↓
2)

(7
↓

(6

8
↓
3

4
↓
4

5
↓
8

6)
↓
1)

Shorter cycles should precede longer ones.

2. Read off the rearrangement as (
3 1 2 7 8 4 5 6
5 7 2 6 3 4 8 1

)
or, written in the usual way, as (

1 2 3 4 5 6 7 8
7 2 5 4 8 1 6 3

)
(1.6)

3. Produce the most general patterned symbolic matrix for π by

?- var matrix(8, M), list permute([2,3,1,5,6,7,8,4], M, P),

transpose(P, M), write matrix(M).

[_G868, _G871, _G868, _G877, _G877, _G877, _G877, _G877]

[_G868, _G868, _G871, _G877, _G877, _G877, _G877, _G877]

[_G871, _G868, _G868, _G877, _G877, _G877, _G877, _G877]

[_G877, _G877, _G877, _G958, _G961, _G964, _G961, _G958]

[_G877, _G877, _G877, _G958, _G958, _G961, _G964, _G961]

[_G877, _G877, _G877, _G961, _G958, _G958, _G961, _G964]

[_G877, _G877, _G877, _G964, _G961, _G958, _G958, _G961]

[_G877, _G877, _G877, _G961, _G964, _G961, _G958, _G958]

11In this notation for types (see [3]), the superscripts stand for the number of times cycles of a particular length occur. The
square brackets have nothing to do with Prolog’s list notation.

Download free ebooks at bookboon.com

Applications of Prolog

34

Enigma 1225: Rows are Columns

Rename the variables as necessary to see that the above is M1 (p. 19).

4. Rearrange the columns of M1 according to (1.6) to get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X6 X1 X6 X6 X3 X6 X3 X6

X6 X3 X6 X6 X1 X6 X3 X6

X6 X3 X6 X6 X3 X6 X1 X6

X2 X6 X4 X4 X6 X5 X6 X5

X5 X6 X5 X4 X6 X2 X6 X4

X4 X6 X2 X5 X6 X5 X6 X4

X4 X6 X5 X2 X6 X4 X6 X5

X5 X6 X4 X5 X6 X4 X6 X2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. Now, using (1.6) again, rearrange the rows of the matrix from the previous step.

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

35

Enigma 1225: Rows are Columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X4 X6 X2 X5 X6 X5 X6 X4

X6 X3 X6 X6 X1 X6 X3 X6

X5 X6 X4 X5 X6 X4 X6 X2

X2 X6 X4 X4 X6 X5 X6 X5

X6 X3 X6 X6 X3 X6 X1 X6

X4 X6 X5 X2 X6 X4 X6 X5

X6 X1 X6 X6 X3 X6 X3 X6

X5 X6 X5 X4 X6 X2 X6 X4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the most general patterned symbolic matrix for τ as is confirmed by the query below.

?- var matrix(8, M), list permute([6,5,4,8,7,3,2,1], M, P),

transpose(P, M), write matrix(M).

[_G868, _G871, _G874, _G877, _G871, _G877, _G871, _G868]

[_G871, _G898, _G871, _G871, _G907, _G871, _G898, _G871]

[_G877, _G871, _G868, _G877, _G871, _G868, _G871, _G874]

[_G874, _G871, _G868, _G868, _G871, _G877, _G871, _G877]

[_G871, _G898, _G871, _G871, _G898, _G871, _G907, _G871]

[_G868, _G871, _G877, _G874, _G871, _G868, _G871, _G877]

[_G871, _G907, _G871, _G871, _G898, _G871, _G898, _G871]

[_G877, _G871, _G877, _G868, _G871, _G874, _G871, _G868]

Row–to–row and column–to–column rearrangements obviously retain the total of a numerical matrix. There-
fore, most general patterned symbolic matrices belonging to permutations of the same type will evaluate to the
same maximum total. This confirms the last of the three results announced in Sect. 1.5.1. The other two
are more straightforward. Admissibility (i.e. not having any 1–cycle) is clearly a type-property. Finally, a
matrix with distinct rows will be transformed to a such by a row–to–row or column–to–column rearrangement.
Therefore, row-distinctness is also a type-property.

1.5.3 Generating Representative Permutations

Generating Permutation Types

The following algorithm, which is from [3, p. 440], is for obtaining all partitions of a number. It will serve as a
basis for generating all permutation types for a given problem size. (As mentioned earlier, there is a one–to–one
correspondence between partitions of a number and permutation types.)

The following rule is the basis for a method of listing all partitions of n in lexicographic order.12

The first partition is [n]. Suppose the current partition λ has parts λ1 � λ2 � . . . � λr. Then the
next partition is found as follows:

(i) if λr �= 1, then the parts of the next partition are λ1, λ2, . . . , λr−1,
λr − 1, 1;

12The following is an appropriate ordering. For two partitions of n, p = [1α12α2 . . . nαn] and r = [1β12β2 . . . nβn], we say that
p comes before r (denoted by p ≺n r) if for some k ∈ {1, . . . , n}, αk > βk and αi = βi for all i ∈ {k + 1, . . . , n}. For example,

[113141] ≺8 [1441] since, more explicitly, [112031 4150607080] ≺8 [142030 4150607080]. (Longest possible identical tail sections
are shaded.) In the ascending chain of successors produced by the algorithm, every partition of n appears since ≺n is a total

ordering on the partitions of n.

Download free ebooks at bookboon.com

Applications of Prolog

36

Enigma 1225: Rows are Columns

(1) (3) (5)

Current
Partition

© © © © ©
© © © © ©
© © © ©
© © © ©
©× ©×
©×
©×

© © © © ©
© © © © ©
© © © ©
©× ©× ©× ©×
©×
©×
©×
©×

© © © © ©
© © © © ©
© © © ©
© © ©
© © ©
©× ©×

[12214252] [144252] [21324152]

(2) (4) (6)

Next
Partition

© © © © ©
© © © © ©
© © © ©
© © © ©
©×
©×
©×
©×

© © © © ©
© © © © ©
© © © ©
©× ©× ©×
©× ©× ©×
©× ©×

© © © © ©
© © © © ©
© © © ©
© © ©
© © ©
©×
©×

[144252] [21324152] [12324152]

Step
Used

(ii) (ii) (i)

Table 1.2: A Ferrers Diagram

(ii) if λr = λr−1 = · · · = λr−s+1 = 1 but λr−s = x �= 1, then the parts of the next partition are
obtained by replacing λr−s, λr−s+1, . . . , λr by x−1, x−1, x−1, . . . , x−1, y, where 1 � y � x−1
and the number of parts x − 1 is chosen so that the result is a partition of n.

To make the recursive step of this algorithm more accessible, we show in Table 1.2 some typical instances for
generating partitions of n = 22. Ferrers Diagrams ([3]) are used in Table 1.2 to illustrate partitions. Tokens
involved in the recursive step are marked (×).

We paraphrase the algorithm in plain English as it may look rather cryptic at first sight. We lay out n
tokens to represent the current partition as a Ferrers diagram. The initial pattern will be just a single row of n
tokens, denoting the partition [n]. All subsequent diagrams will have several rows and (as a rule) longer rows
are placed above shorter ones. To decide which of the recursive steps (i) or (ii) applies, we inspect the bottom
row. If it contains more than one token, we then remove its last (i.e. rightmost) token and start a new row by
placing it below what was hitherto the bottom row. This completes step (i). On the other hand, if the bottom
row consists of a single token, we then scan the diagram from bottom to top. There are now two possibilities.
We may find that all rows are single-token rows in which case we have found the last partition, [1n], and stop.

Download free ebooks at bookboon.com

Applications of Prolog

37

Enigma 1225: Rows are Columns

(This has been omitted in the algorithm.) The other possibility is that there is a row containing more than one
token. In this case, we remove from the diagram all single-token rows as well as the bottom non-single-token
row which has x(� 2) tokens, say. (These tokens have been marked in Table 1.2, parts (1) and (3).) The tokens
thus removed are now used to build up as many new rows of length x− 1 as possible; we place them below the
other (undisturbed) tokens. All the remaining tokens, less than x − 1, if any, are placed below all the other
tokens. This completes step (ii).

Partitions will be represented in our Prolog implementation by lists of pairs; for example, [(2,1), (3,2),

(4,1), (5,2)] stands for [21324152].

As a first step towards implementing a type generator , we define next partition(+Current,-Next) which
for a Current partition returns the Next partition; for example,

?- next partition([(2,1), (3,2), (4,1), (5,2)], Next).

Next = [(1, 2), (3, 2), (4, 1), (5, 2)]

In (P-1.2) we define those three clauses of next partition/2 which are typified by the cases in Table 1.2; the
definition of the remaining clauses is asked for in Exercise 1.10.

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

38

Enigma 1225: Rows are Columns

Current Partition [234162] . . . [4352] . . .

Next Partition . . . [113163] . . . [15233142]

Step Used

Current Partition . . . [135172] . . .

Next Partition [214262] . . . [334251]

Step Used

Table 1.3: Suggested Examples for Exercise 1.10

Prolog Code P-1.2: Three clauses of the predicate next partition/2

1 next_partition([(1,Alpha),(2,1)|T], % Cases (1)-(2) in Table 1.2

2 [(1,NewAlpha)|T]) :- %

3 NewAlpha is Alpha + 2. %

4 next_partition([(1,Alpha1),(L,AlphaL)|T], % Cases (3)-(4) in Table 1.2

5 [(Rest,1), %

6 (NewL,Ratio), %

7 (L,NewAlphaL)|T]) :- %

8 L > 2, %

9 AlphaL > 1, %

10 NewL is L - 1, %

11 Rest is (Alpha1 + L) mod NewL, %

12 Rest > 0, %

13 Ratio is (Alpha1 + L) // NewL, %

14 NewAlphaL is AlphaL - 1. %

15 next_partition([(2,1)|T],[(1,2)|T]). % Cases (5)-(6) in Table 1.2

Exercise 1.10. The complete definition of next partition/2 comprises ten clauses three of which have
been defined already. Typical examples covered by each of the remaining seven clauses are partially shown in
Table 1.3. Complete Table 1.3 and then define the missing clauses of next partition/2 . (It may be helpful
to devise the corresponding Ferrers diagrams by using coins.) �

The predicate next partition/2 returns for a given partition its successor. We want, however, a generator
(also called enumerator) of partitions, i.e. a predicate which on backtracking will eventually return all partitions.
The more general question is as follows: How do we ‘convert’ a successor predicate into a generator? The key
to answering this question is by recognizing that this type of problem has been met before. In Exercise 4.6, [9,
p. 134], the following definition of int(+N,?NextN) was considered,

int(I, I).

int(Last, I) :- succ(Last, New), int(New, I).

This definition can be used as a template for defining another generator: replace succ and int respectively by
next partition and part thus giving,

Download free ebooks at bookboon.com

Applications of Prolog

39

Enigma 1225: Rows are Columns

part(P, P).

part(Last, Next) :- next_partition(Last, New), part(New, Next).

This will result in an acceptable solution,

?- part([(1,2),(2,1),(4,2),(5,2)], P).

P = [(1, 2), (2, 1), (4, 2), (5, 2)] ;

P = [(1, 4), (4, 2), (5, 2)] ;

P = [(2, 1), (3, 2), (4, 1), (5, 2)] ;

...

A better idea still is to write a higher order predicate, generator/3 , say, to accomplish the same task for
any successor predicate. We then have, for example,

?- generator(next partition,[(1,2),(2,1),(4,2),(5,2)], P).

P = [(1, 2), (2, 1), (4, 2), (5, 2)] ;

P = [(1, 4), (4, 2), (5, 2)] ;

P = [(2, 1), (3, 2), (4, 1), (5, 2)] ;

...

and

?- generator(succ,7,I).

I = 7 ;

I = 8 ;

I = 9 ;

...

We define generator(+Pred,+Init,?Element) in (P-1.3) by

Prolog Code P-1.3: Definition of generator/3

1 generator(Pred,From,Element) :-

2 retractall(temp(_,_)),

3 assert(temp(First,First)),

4 assert(temp(Last,E) :- (call(Pred,Last,New), temp(New,E))),

5 temp(From,Element).

(P-1.3) shows that

• The temporary generator to be defined in the database is named temp/2 . Possible earlier definitions are
removed first.

• Following our template, two clauses of temp/2 are written to the database. For instance, after running
the above example, the database may be inspected thus

?- listing(temp).

temp(A, A).

temp(A, B) :- call(succ, A, C), temp(C, B).

As the predicate name is open at this stage, call/3 is used to invoke the predicate in Pred . (See inset.)

• Finally, temp/2 , just written to the database, is invoked and backtracking is used to produce the sequence.

Download free ebooks at bookboon.com

Applications of Prolog

40

Enigma 1225: Rows are Columns

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1)

(4, 0)

� � �
� �

�

�

� �

� �

�

�

�
�

Figure 1.6: Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.12.)

Built-in Predicate: call/n, n = 1, 2, 3, ...

call(+Goal) invokes Goal . Combine call/1 with =../2 , the built in predicate
univ ([9] or [33]), if the arity of the predicate in Goal is known at run time
only. Example:

?- Functor = append, Args = [[1,2],[3],L],

Goal =.. [Functor| Args], call(Goal).

L = [1, 2, 3]

Goal = append([1, 2], [3], [1, 2, 3])

Use call(+Predicate, +Arg1, +Arg2, ...) to invoke a Predicate whose ar-
ity is known at compile time. Examples:

?- Pred = append, call(Pred,[1,2],[3],L).

Pred = append

L = [1, 2, 3]

?- Pred = append([1,2]), call(Pred,[3],L).

Pred = append([1, 2])

L = [1, 2, 3]

call/n is a higher order predicate.

Exercise 1.11. Define a predicate next int(+Upper,+I,-NextI) for unifying NextI with the value of I
incremented by 1. The predicate should fail if Upper does not exceed I . Use next int/3 in conjunction with
generator/3 to generate all integers between 3 and 9. �

Exercise 1.12. Fig. 1.6 indicates an enumeration scheme for all pairs of non-negative integers (the Carte-
sian product). Define next pair/2 for returning the successor of any given pair. Then use next pair/2 in
conjunction with generator/3 for defining an enumerator for the said Cartesian product. �

Exercise 1.13. (An improved generator) The predicate pairs/1 , defined by

pairs((I,J)) :- int(0,Sum), between(0,Sum,I), J is Sum - I.

Download free ebooks at bookboon.com

Applications of Prolog

41

Enigma 1225: Rows are Columns

enumerates the pairs of non-negative integers as shown in Fig. 1.7.13 It will return on backtracking all pairs
starting from (0, 0).

?- pairs(P).

P = 0, 0 ;

P = 0, 1 ;

P = 1, 0 ;

P = 0, 2 ;

P = 1, 1 ;

...

An alternative implementation of pairs/1 may conceivably be obtained by replacing in its definition the
predicates int/2 and between/3 by their respective definitions using generator/3 :

pairs_alt((I,J)) :- generator(succ,0,Sum),

generator(next_int(Sum),0,I),

J is Sum - I.

Testing will reveal, however, that this implementation is flawed. The problem is due to the use by
generator/3 of the same name temp for predicates written to the database.

13The built-in predicate between/3 is described in [9, p. 41].

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

42

Enigma 1225: Rows are Columns

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1)

(4, 0)

�
� � � �

� � �

� �

�

� � � �

Figure 1.7: Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.13.)

(The call to generator(next int(Sum),0,I) will interfere with that of generator(succ,0,Sum) .) The
problem could be avoided though if generator/3 created temporary predicates with a different and unique
name every time it is invoked.

Define such an improved version of generator/3 .
Hint. It is suggested that the temporary predicates be named temp 0 , temp 1 , etc. You should use the

built-in predicate current predicate/2 (described in the SWI manual [33]) for finding out whether a proposed
new predicate name is available. Use concat atom/2 [9, p. 126] for constructing new predicate names. �

Admissible Representative Permutations

How many permutation types will have to be considered for the original 8 × 8 problem? This is easily found
out by a query,

?- bagof(P,generator(next partition,[(8,1)], P), Ps),

length(Ps,NTypes).

NTypes = 22

The number 22 is further reduced by concentrating on admissible permutations, i.e. on those without a 1–cycle;
the types of these we obtain by14

?- bagof(P, I^ A^ T^(generator(next partition,[(8,1)], P),

P = [(I, A)| T], I > 1), Ps).

Ps = [[(8, 1)], [(2, 1),(6, 1)], [(3, 1),(5, 1)], [(4, 2)],

[(2, 2),(4, 1)], [(2, 1),(3, 2)], [(2, 4)]]

We therefore have to consider here a mere 7 types. (Contrast this with the 14, 833 admissible permutations
considered earlier!) All we have to do now is to create for each admissible type a representative permutation.

Suppose we want to construct a representative permutation for the type [213351], a partition of 16. An
example permutation of this type in the cycle notation is obtained by simply grouping the elements of {1, . . . , 16}
according to the length of the cycles needed:

(1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14 15 16) (1.7)

14This query gives rise to ad partition(+N,?P) , a predicate for generating (and testing) admissible partitions of N :

ad partition(N,[(I,A)|T]) :- generator(next partition,[(N,1)],[(I,A)|T]),

I > 1.

Download free ebooks at bookboon.com

Applications of Prolog

43

Enigma 1225: Rows are Columns

Using the two-line notation, we rewrite this as(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 5 3 7 8 6 10 11 9 13 14 15 16 12

)
(1.8)

which then in the Prolog implementation will be denoted by

[2,1,4,5,3,7,8,6,10,11,9,13,14,15,16,12] (1.9)

The Prolog implementation of (1.7)–(1.9) is in three steps:

(a) A predicate split(+N,+Type,-S) is used for partitioning [1, . . . , 16] into a list of sublists S according to
Type :15

?- split(16,[(2,1),(3,3),(5,1)],_S), write term(S,[]).

[[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]]

split/3 is defined below in terms of an auxiliary predicate split/4 which itself uses the accumulator
technique.

split(N,Type,S) :- from_to(1,N,L), split(L,Type,[],S).

Exercise 1.14. Define split/4 . (Some suggested hand computations are shown in Fig. 1.8, p. 45.) �

(b) maplist/3 is applied to rotate each sublist in the above list–of–lists.16

?- split(16,[(2,1),(3,3),(5,1)],_S), maplist(rotate, S,_R),

write term(R,[]).

[[2,1], [4,5,3], [7,8,6], [10,11,9], [13,14,15,16,12]]

(c) Finally, flatten/2 is used to obtain the list in (1.9).

(a)–(c) give rise to rep perm(+N,+Type,-Perm) , a predicate for finding a representative permutation of a given
type.

rep_perm(N,Type,Perm) :- split(N,Type,S),

maplist(rotate,S,R),

flatten(R,Perm).

1.5.4 Finishing Touches

Based on the ideas in Sect. 1.5.3, we are now in a position to define a new version of the predicate square/5 ,
defined in (P-1.1); the new definition is shown in (P-1.4). Now the queries from Sect. 1.4.10 may be completed
as before and with a much reduced computing time. For example, for a 14 × 14 board we find by a near
instantaneus response that the maximum total is 4900. (The earlier version won’t solve this problem due to
memory shortage and excessive computing time.)

15The first argument of split/3 is redundant as it can be computed from Type . Not having to recompute it, however, will save
computing time.

16Prolog implementations of list rotation are discussed in [5], [8] and [9].

Download free ebooks at bookboon.com

Applications of Prolog

44

Enigma 1225: Rows are Columns

Prolog Code P-1.4: Definition of square2/5

1 square2(Size,M,Total,Freq,Perm) :- var_matrix(Size,M),

2 ad_partition(Size,Type),

3 rep_perm(Size,Type,Perm),

4 list_permute(Perm,M,P),

5 transpose(P,M),

6 distinct(M),

7 eval_matrix(M,Freq),

8 total(Freq,Total).

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

45

Enigma 1225: Rows are Columns

split([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,1),(3,3),(5,1)], [], S) ��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,0),(3,3),(5,1)], [[1,2]], S) ��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(3,3),(5,1)], [[1,2]], S) ��

split([6,7,8,9,10,11,12,13,14,15,16], [(3,2),(5,1)], [[3,4,5], [1,2]], S) ��

split([9,10,11,12,13,14,15,16], [(3,1),(5,1)], [[6,7,8], [3,4,5], [1,2]], S) ��

split([12,13,14,15,16], [(3,0),(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

split([12,13,14,15,16], [(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

split([], [(5,0)], [[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

S = [[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]] �� success

Figure 1.8: Suggested Hand Computations for split/4

Download free ebooks at bookboon.com

Applications of Prolog

46

Enigma 1225: Rows are Columns

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

47

Blind Search

Chapter 2

Blind Search

Many problems in Artificial Intelligence (AI) can be formulated as network search problems. The crudest
algorithms for solving problems of this kind, the so called blind search algorithms, use the network’s connectivity
information only. We are going to consider examples, applications and Prolog implementations of blind search
algorithms in this chapter.

Since implementing solutions of problems based on search usually involves code of some complexity, modu-
larization will enhance clarity, code reusability and readibility. In preparation for these more complex tasks in
this chapter, Prolog’s module system will be discussed in the next section.

2.1 Digression on the Module System in Prolog

In some (mostly larger) applications there will be a need to use several input files for a Prolog project. We have
met an example thereof already in Fig. 3.5 of [9, p. 85] where consult/1 was used as a directive to include in
the database definitions of predicates from other than the top level source file. As a result, all predicates thus
defined became visible to the user: had we wished to introduce some further predicates, we would have had to
choose the names so as to avoid those already used. Clearly, there are situations where it is preferable to make
available (that is, to export) only those predicates to the outside world which will be used by other non-local
predicates and to hide the rest. This can be achieved by the built-in predicates module/2 and use module/1 .

As an illustrative example, consider the network in Fig. 2.1.1 The network connectivity in links.pl is
defined by the predicate link/2 which uses the auxiliary predicate connect/2 (Fig. 2.2).

The first line of links.pl is the module directive indicating that the module name is edges and that the
predicate link/2 is to be exported. All other predicates defined in links.pl (here: connect/2) are local to
the module and (normally) not visible outside this module.

Suppose now that in some other source file, link/2 is used in the definition of some new predicate (Fig. 2.3).
Then, the (visible) predicates from links.pl will be imported by means of the directive

:- use_module(links).2

The new predicate thus defined may be used as usual:

1This is a network from the AI–classic [34].
2Notice that the argument in use module/1 is the filename without the .pl extension.

Download free ebooks at bookboon.com

Applications of Prolog

48

Blind Search

�
�
�
�

�
�
�
�

���

� � �
��
cba

d e f

gs

Figure 2.1: A Network

?- consult(df1).

% links compiled into edges 0.00 sec, 1,644 bytes

% df1 compiled 0.00 sec, 3,208 bytes

Yes

?- successors(a,L).

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

49

Blind Search

:- module(edges,[link/2]).

connect(a,b). connect(a,d). connect(a,s).

connect(b,c). connect(b,e).

connect(d,e). connect(d,s).

connect(e,f).

connect(f,g).

link(Node1,Node2) :- connect(Node1,Node2).

link(Node1,Node2) :- connect(Node2,Node1).

Figure 2.2: The File links.pl

:- use module(links).

...

...

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

Figure 2.3: Fragment of the File df1.pl

L = [b, d, s] ;

No

In our example, the predicate connect/2 will not be available for use (since it is local to the module edges

that resides in links.pl). A local predicate may be accessed, however, by prefixing its name by the module
name in the following fashion:3

?- edges:connect(a,N).

N = b ;

N = d ;

N = s ;

No

(Notice the distinct uses of the module name and the name of the file in which the module resides.)

2.2 Basic Search Problem

Let us assume that for the network in Fig. 2.1 we want to find a path from the start node s to the goal node
g. The search may be conducted by using the (associated) search tree shown in Fig. 2.4. It is seen that the

3SWI–Prolog will suggest a correction if the predicate name is used without the requisite prefix:

?- connect(a,N).

Correct to: edges:connect(a, N)? yes

N = b ;

...

Download free ebooks at bookboon.com

Applications of Prolog

50

Blind Search

0 .

1

2

3 . .

4 . .b
...

c e
...

a
...

�
�
�
�

�
�
�
�

b d
...

s
...

�
�
�
�

�
�
�
�

��������

a

f
...

g e
...

	
	
	

f b
...

d
...

�
�
�
�

�
�
�

������

e s
...

a
...

�
�
�
�

�����������

d

������������

�����������

s

Figure 2.4: The Search Tree

search tree is infinite but highly repetitive. The start node s is at the root node (level 0). At level 1, all tree
nodes are labelled by those network nodes which can be reached in one step from the start node. In general, a
node labelled n in the tree at level � has successor (or child) nodes labelled s1, s2, . . . if the nodes s1, s2, . . . in
the network can be reached in one step from node n. These successor nodes are said to be at level � + 1. The
node labelled n is said to be a parent of the nodes s1, s2, In Fig. 2.4, to avoid repetition, those parts of the
tree which can be generated by expanding a node from some level above have been omitted.

Some Further Terminology

• The connections between the nodes in a network are called links.

• The connections in a tree are called branches.

• In a tree, a node is said to be the ancestor of another if there is a chain of branches (upwards) which
connects the latter node to the former. In a tree, a node is said to be a descendant of another node if the
latter is an ancestor of the former.

In Fig. 2.5 we show, for later reference, the fully developed (and ’pruned ’) search tree. It is obtained from
Fig. 2.4 by arranging that in any chain of branches (corresponding to a path in the network) there should be
no two nodes with the same label (implying that in the network no node be visited more than once). All
information pertinent to the present problem is recorded thus in the file links.pl (Fig. 2.2) by link/2 . Notice
that the order in which child nodes are generated by link/2 will govern the development of the trees in Figs. 2.4
and 2.5: children of the same node are written down from left to right in the order as they would be obtained
by backtracking; for example, the node labelled d at level 1 in Fig. 2.4 is expanded by

?- link(d,Child).

Download free ebooks at bookboon.com

Applications of Prolog

51

Blind Search

0 .

1

2

3 . . .

4

5

6 .

c

g

f d

�
�
�

�
�
�

e

����

�
�
�

b

g

f

c

b

�
�
�

�
�
�

e

d

�
�
�
�

�����

a

g

f

c a

�
�
�

�
�
�

b

�
�
�

�
�
�

e

c

g

f

e

�
�
�

�
�
�

b

a

�
�
�
�

�����

d

���������

���������

s

Figure 2.5: The Pruned Search Tree

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

52

Blind Search

Child = e ;

Child = s ;

Child = a ;

No

(The same may be deduced, of course, by inspection from links.pl, Fig. 2.2.) link/2 will serve as input to
the implementations of the search algorithms to be discussed next.

2.3 Depth First Search

The most concise and easy to remember illustration of Depth First is by the conduit model (Fig. 2.6). We start
with the search tree in Fig. 2.5 which is assumed to be a network of pipes with inlet at the root node s. The
tree is rotated by 90◦ counterclockwise and connected to a valve which is initially closed. The valve is then
opened and the system is observed as it gets flooded under the influence of gravity. The order in which the
nodes are wetted corresponds to Depth First.

Download free ebooks at bookboon.com

Applications of Prolog

53

Blind Search

©×

���

c

gf

d

� � �

� �
�

e

�
�
�

� �
�

b

gf

cb

� � �

� �
�

ed

�
�
�

�
�
�
�

a

gf

c

a

� � �

� �
�

b

�
�
�

� �
�

e

c

gfe

� � �

� �
�

ba

�
�
�

�
�
�
�

d

�
�
�
�
�
�
�

s

�

�

Figure 2.6: Depth First Search – The Conduit Model

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

54

Blind Search

:- use module(links).

path(Node1,Node2,[Node1,Node2]) :- link(Node1,Node2).

path(Node1,Node2,[Node1|Path32]) :- link(Node1,Node3),

write(’visiting node ’), write(Node3), nl,

path(Node3,Node2,Path32).

Figure 2.7: The File naive.pl

2.3.1 Näıve Solution

We may be tempted to use Prolog’s backtracking mechanism to furnish a solution by recursion; our attempt is
shown in Fig. 2.7.4 However, it turns out that the implementation does not work due to cycling in the network.
The query shown below illustrates the problems arising.

?- path(s,g,Path).

visiting node a

visiting node b

visiting node c

visiting node b

visiting node c

...

Action (h for help) ? abort

% Execution Aborted

2.3.2 Incremental Development Using an Agenda

We implement Depth First search incrementally using a new approach. The idea is keeping track of the nodes
to be visited by means of a list, the so called list of open nodes, also called the agenda. This book–keeping
measure will turn out to be amenable to generalization; in fact, it will be seen that the various search algorithms
differ only in the way the agenda is updated.

First Version

A first, preliminary, form of Depth First search is stated in Algorithm 2.3.1. The definition of the corresponding
predicate, depth first/2 , is shown in Fig. 2.8. (At this stage, we are attempting an implementation which
merely succeeds once the goal node is found.)

4The shaded entries facilitate explanatory screen displays only.

Download free ebooks at bookboon.com

Applications of Prolog

55

Blind Search

Algorithm 2.3.1: DepthFirst(StartNode, GoalNode)

comment: First temptative implementation of Depth First Search

RootNode ← StartNode
OpenList ← [RootNode]
[H |T] ← OpenList
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SuccList ← successors of H
OpenList ← SuccList ++ T
if OpenList = []

then return (failure)
[H |T] ← OpenList

return (success)

What is the crucial feature of this algorithm? It is the way the list of open nodes is manipulated. There are
two possibilities:

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

56

Blind Search

:- use module(links).

depth first(Start,Goal) :- dfs loop([Start],Goal).

dfs loop([Goal|],Goal).

dfs loop([CurrNode|OtherNodes],Goal) :-

successors(CurrNode,SuccNodes),

write(’Node ’), write(CurrNode),

write(’ is being expanded. ’),

append(SuccNodes,OtherNodes,NewOpenNodes),

write(’Successor nodes: ’), write(SuccNodes), nl,

write(’Open nodes: ’), write(NewOpenNodes), nl,

dfs loop(NewOpenNodes,Goal).

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

Figure 2.8: The File df1.pl

• Inspection. We may inspect the agenda’s head to see whether it is the goal node.

• Updating. If the head is not the goal node, we determine the head’s successor or successors. They are
collected into a list, SuccList , say, (which may well be empty) and a new agenda will be formed by
appending the tail of the old agenda to SuccList . The order of entries in the list just created is essential:
the successors of the most recently visited node are placed to the front, thereby becomig candidates for
more immediate attention.

As mentioned earlier, search algorithms differ from each other only in the way the list of open nodes is updated.
The updating mechanism of Depth First is on a last–in–first–out (LIFO) basis.

The (unsatisfactory) behaviour of depth first/2 in the present form is exemplified in Fig. 2.9. Obviously,
the order of the nodes’ expansion is as expected but we descend into ever greater depths of (the leftmost part
of) the tree in Fig. 2.4. There are two possible solutions to this problem – they will be discussed below.

Using a List of ‘Closed Nodes’

The underlying idea of this approach is that a node on the search tree should not be included in the open
list (again) if a node with the same label has ever been visited before. The examples below will show (and
indeed a moment of reflection should confirm) that this method may not find all goal nodes (or all paths to
the goal node(s)). The realization of the idea is as follows. Once we remove H from the list of open nodes
(Algorithm 2.3.1) we should include H into another list, the list of closed nodes, indicating that it should not
be expanded (i.e. included in the list of open nodes) ever again. This version of Depth First search is shown
as Algorithm 2.3.2. The corresponding Prolog program, df2.pl, is shown in Fig. 2.10. Finally, an interactive
session with this second version of depth first/2 is shown in Fig. 2.11. The missing (shaded) parts in Fig. 2.10
are goals for displaying information on the progress of the search as seen in Fig. 2.11.

Exercise 2.1. Complete the code in Fig. 2.10 such that the response shown in Fig. 2.11 is achieved. �

Download free ebooks at bookboon.com

Applications of Prolog

57

Blind Search

�

�

�

�

?- depth first(s,g).

Node s is being expanded. Successor nodes: [a, d]

Open nodes: [a, d]

Node a is being expanded. Successor nodes: [b, d, s]

Open nodes: [b, d, s, d]

Node b is being expanded. Successor nodes: [c, e, a]

Open nodes: [c, e, a, d, s, d]

...

Action (h for help) ? abort

% Execution Aborted

Figure 2.9: Illustrative Query for depth first/2 – First Version

Algorithm 2.3.2: DepthFirst(StartNode, GoalNode)

comment: Depth First Search with a List of Closed Nodes

RootNode ← StartNode
OpenList ← [RootNode]
ClosedList ← []
[H |T] ← OpenList
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H (1)
OpenList ← (SuccList ∩ ClosedListc) ++ T (2)
ClosedList ← [H |ClosedList] (3)
if OpenList = []

then return (failure)
[H |T] ← OpenList

return (success)

Download free ebooks at bookboon.com

Applications of Prolog

58

Blind Search

:- use module(links).

depth first(Start,Goal) :- ... , % clause 0

dfs loop([Start],[],Goal). %

dfs loop([Goal|], ,Goal) :- % clause 1

dfs loop([CurrNode|OtherNodes],ClosedList,Goal) :- % clause 2

successors(CurrNode,SuccNodes),

... , %

findall(Node,(member(Node,SuccNodes), %

not(member(Node,ClosedList))),Nodes),

append(Nodes,OtherNodes,NewOpenNodes), %

... , %

dfs loop(NewOpenNodes,[CurrNode|ClosedList]︸ ︷︷ ︸,Goal). %

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

�� 	
Implements (1)
}�
�� 	
Implements (2)

⎫⎬
⎭�

�� 	
Implements (3)�

Figure 2.10: The File df2.pl

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

59

Blind Search

�

�

�

�

?- depth first(s,g).

Open: [s], Closed: []

Node s is being expanded. Successors: [a, d]

Open: [a, d], Closed: [s]

Node a is being expanded. Successors: [b, d, s]

Open: [b, d, d], Closed: [a, s]

Node b is being expanded. Successors: [c, e, a]

Open: [c, e, d, d], Closed: [b, a, s]

Node c is being expanded. Successors: [b]

Open: [e, d, d], Closed: [c, b, a, s]

Node e is being expanded. Successors: [f, b, d]

Open: [f, d, d, d], Closed: [e, c, b, a, s]

Node f is being expanded. Successors: [g, e]

Open: [g, d, d, d], Closed: [f, e, c, b, a, s]

Goal found: g

Yes

Figure 2.11: Illustrative Query for depth first/2 – Second Version

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

��

u

vw

Figure 2.12: The New Network Component

Exercise 2.2. Suppose we want to model a network which arises by augmenting the graph in Fig. 2.1 with
the one shown in Fig. 2.12, p. 59. (The new network thus comprises two unconnected components.)

(a) Augment the database in Fig. 2.2 to reflect the connectivity of the new network.

(b) Write down hand computations for the queries

(i) ?- depth first(d,c).

(ii) ?- depth first(u,c).

�

The predicate depth first/2 from df2.pl (Fig. 2.10) finds a goal node (if there is one) but does not return
the correspondig path. (We ignore the shaded clauses in Fig. 2.10 as they are there for explanatory reasons
only.) A new, improved version, depth first(+Start,+Goal,-Path) , say, should return also the Path found,

Download free ebooks at bookboon.com

Applications of Prolog

60

Blind Search

given the Start node and the Goal node. We modify the auxiliary predicate dfs loop/3 from df2.pl in two
ways.

• Now, its first argument will take the list of open paths (and not that of open nodes). This is the argument
where we accumulate (maintain) the agenda.

• Into an additional (fourth) argument will the path from Start to Goal be copied as soon as it appears
at the head of the agenda. The search is then finished.

• The second and third arguments of dfs loop/4 will hold, as before, the list of closed nodes and the goal
node, respectively.

The hand computations in Fig. 2.13, p. 61, indicate the required behaviour of the new version of depth first/3 .
Paths will be represented by the lists of nodes visited; internally, they will be read from right to left. For

example, the list [g, f, e, b, a, s] will stand for the path s → a → b → e → f → g. In Fig. 2.13, all paths
we have been temporarily admitted to the agenda which arise by expanding the head of the head of the agenda.
(Expanding a node means finding its successors.) Immediately after expansion, however, those paths have been
removed (indicated by /////) whose head features in the list of closed nodes in the line above. To implement
the corresponding predicate depth first/3 (Fig.2.14, p. 63), Algorithm 2.3.3 has been used with an auxiliary
procedure EXTENDPATH.

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

61

Blind Search

depth first(s, g, Path) ��

dfs loop([[s]], [], g, Path) ��

dfs loop([[a,s], [d,s]], [s], g, Path) ��

dfs loop([[b,a,s], [d,a,s], [s,a,s]/////, [d,s]], [a,s], g, Path) ��

dfs loop([[c,b,a,s], [e,b,a,s], [a,b,a,s]///////, [d,a,s], [d,s]], [b,a,s], g, Path) ��

dfs loop([[b,c,b,a,s],//////// [e,b,a,s], [d,a,s], [d,s]], [c,b,a,s], g, Path) ��

dfs loop([[f,e,b,a,s], [b,e,b,a,s],//////// [d,e,b,a,s], [d,a,s], [d,s]], [e,c,b,a,s], g, Path) ��

dfs loop([[g,f,e,b,a,s], [e,f,e,b,a,s],///////// [d,e,b,a,s], [d,a,s], [d,s]], [f,e,c,b,a,s], g, Path) ��

dfs loop([[g,f,e,b,a,s], [d,e,b,a,s], [d,a,s], [d,s]], [f,e,c,b,a,s], g, [g,f,e,b,a,s]) ��

depth first(s, g, [g,f,e,b,a,s]) �� success

Figure 2.13: Hand Computations for the Query ?- depth first(s,g,Path).

Exercise 2.3. Define extend path(+Nodes,+Path,-NewPaths) from Algorithm 2.3.3. �

Download free ebooks at bookboon.com

Applications of Prolog

62

Blind Search

Algorithm 2.3.3: DepthFirst(StartNode, GoalNode)

comment: Depth First with Closed Nodes and Open Paths

procedure ExtendPath([x1, · · · , xN], list)
comment: To return [] if the first argument is []

for i ← 1 to N
do

{
listi ← [xi|list]

return ([list1, · · · , listN])

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
ClosedNodes ← []
[[H |T]|TailOpenPaths] ← OpenPaths
while H �= GoalNode

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H
NewOpenNodes ← (SuccList∩ ClosedListc)
NewPaths ← ExtendPath(NewOpenNodes, [H |T])
OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
Path ← Reverse([H |T])5

output (Path)

In the query shown below, the predicate depth fist/3 thus defined finds the leftmost path to the goal node
in Fig. 2.4. On backtracking, no further paths to the goal node will be found.

?- depth first(s,g,Path).

Path = [s, a, b, e, f, g] ;

No

Path Checking

This technique allows all paths to the goal node to be found. We do not use a list of closed nodes here. Instead,
upon prefixing the head of the agenda by each of the successors of its head, we check for each of the lists thus
created whether it is a path. In Algorithm 2.3.4, p. 64, this test is carried out by the as yet unspecified procedure
ISPATH. Usually, paths will be required not to contain cycles. Then, the procedure ISPATH checks for distinct
entries of the argument list.6

The main body of Algorithm 2.3.4 has been implemented by the predicate depth first/4 , defined in
df4.pl, Fig. 2.15, p. 65. A few noteworthy features of this implementation of Depth First are as follows.

5For a pseudocode of REVERSE, see [9, p. 24].
6By induction, this test simplifies to showing that the head of a putative path is not an entry in its tail.

Download free ebooks at bookboon.com

Applications of Prolog

63

Blind Search

:- use module(links).

depth first(Start,Goal,PathFound) :-

dfs loop([[Start]],[],Goal,PathFoundRev),

reverse(PathFoundRev,PathFound).

dfs loop([[Goal|PathTail]|], ,Goal,[Goal|PathTail]).

dfs loop([[CurrNode|T]|Others],ClosedList,Goal,PathFound) :-

successors(CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

not(member(Node,ClosedList))),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

dfs loop(NewOpenPaths,[CurrNode|ClosedList],Goal,PathFound).

successors(Node,SuccNodes) :-

findall(Successor,link(Node,Successor),SuccNodes).

% auxiliary predicate extend path/3 ...

...

Figure 2.14: The File df3.pl – Depth First with Closed Nodes and Open Paths

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

64

Blind Search

• The arguments of depth first(+Start,+G Pred,+C Pred,-PathFound) , the main predicate, play the
following rôle:

– As before, Start is unified with the start node.

– G Pred is unified with the name of the goal predicate. (In earlier implementations, a goal node
was expected.) Due to this generalization, in more complex applications, now a goal node may be
specified by a condition. Several goal nodes may thus also be accounted for.

– The third argument, C Pred , is unified with the name of the connectivity predicate which in earlier
implementations was link/2 . Greater flexibility is afforded by this additional argument. In the
example query in Fig. 2.17, p. 66, the connectivity predicate link/2 is used which is defined in
links.pl (see p. 49) from where it is imported by the first use module/1 directive in df4.pl.

– Finally, on return, the last argument is unified with the path found.

Algorithm 2.3.4: DepthFirst(StartNode, G Pred, C Pred)

comment: Depth First with Path Checking.
Procedures are assumed available for

• Testing whether a path is a goal path by using
the procedure in G Pred;

• Finding successors of a node by using the con-
nectivity procedure in C Pred.

procedure IsPath(list)
comment: Returns a Boolean value.

Is application specific.

...

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
[[H |T]|TailOpenPaths] ← OpenPaths
while [H |T] is not a goal path

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SuccList ← successors of H
ONodes ← list of S ∈ SuccList with IsPath([S, H |T])
NewPaths ← ExtendPath(ONodes, [H |T])
OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
Path ← Reverse([H |T])
output (Path)

Download free ebooks at bookboon.com

Applications of Prolog

65

Blind Search

:- use module(links).

:- use module(searchinfo).

depth first(Start,G Pred,C Pred,PathFound) :-

dfs loop([[Start]],G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

dfs loop([Path|],G Pred, ,Path) :- call(G Pred,Path).

dfs loop([[CurrNode|T]|Others],G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

dfs loop(NewOpenPaths,G Pred,C Pred,PathFound).

% auxiliary predicates ...

successors(C Pred,Node,SuccNodes) :-

findall(Successor,call(C Pred,Node,Successor),SuccNodes).

extend path([], ,[]).

extend path([Node|Nodes],Path,[[Node|Path]|Extended]) :-

extend path(Nodes,Path,Extended).

Figure 2.15: The File df4.pl – Depth First with Path Checking

:- module(info,[goal path/1, is path/1]).

goal path([g|]).

is path([H|T]) :- not(member(H,T)).

Figure 2.16: The File searchinfo.pl

Download free ebooks at bookboon.com

Applications of Prolog

66

Blind Search

�

�

�

�

?- consult(df4).

% links compiled into edges 0.05 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% df4 compiled 0.05 sec, 4,944 bytes

Yes

?- depth first(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

Figure 2.17: Interactive Session for depth first/4 – Path Checking

• The while loop in Algorithm 2.3.4 is implemented by dfs loop/4 . It uses the predicate is path/1 , an
implementation of the procedure ISPATH.

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

67

Blind Search

�
�
�
�
�
�
���

�
�
�

���

� � �
��
cba

d e f

gs

Figure 2.18: A Network (see Exercise 2.4, p. 67)

This predicate is imported from searchinfo.pl (Fig. 2.16, p. 65) by the second use module/1 directive
in df4.pl. In the present version of is path/1 , paths are defined to be lists with distinct entries.

• call/2 and call/3 , are used (see p. 40) to invoke the imported predicates goal path/1 and link/2 at
run time.

• It is seen from Fig. 2.17 that on backtracking all paths to the goal node are found.

Exercise 2.4. A new network is shown in Fig. 2.18, p. 67.

(a) Augment the file links.pl to reflect the connectivity of the new network.

(b) Suppose we want to find all paths from s to g such that no edge is traversed more than once but we
don’t mind visiting nodes several times. Define a new version of is path/1 in searchinfo.pl to this
new specification.

(c) Run depth first/4 to find all paths from s to g.

�

Exercise 2.5. Rewrite the definition of depth first/4 in Fig. 2.15 using difference lists.
Hints. You should represent paths, as before, by ordinary lists and write the agenda in terms of difference

lists. Modify accordingly the predicates dfs loop and extend path . The latter should be invoked by a new
version of depth first/4 , called depth first dl/4 . You should confirm the advantage of using difference
lists by a sample session. (The model solution is found in the file df.pl along with the old version based on
ordinary lists.) �

2.4 Breadth First Search

Another blind search algorithm is Breadth First. It visits the nodes of the search tree level by level from left to
right as indicated in Fig. 2.19. It always finds a shortest path to the goal node. Now the agenda is updated
on a first–in–first–out (FIFO) basis, thus the successors of a node just expanded will be put to the end of the
list of open nodes.

The definition of breadth first/4 in Fig. 2.20, p. 69, is arrived at by minor modifications of the code in
Fig. 2.15:

Download free ebooks at bookboon.com

Applications of Prolog

68

Blind Search

� �

� � � �

� � � � � �

� � � � �

c

g

f d

�
�
�

�
�
�

e

����

�
�
�

b

g

f

c

b

�
�
�

�
�
�

e

d

�
�
�
�

�����

a

g

f

c a

�
�
�

�
�
�

b

�
�
�

�
�
�

e

c

g

f

e

�
�
�

�
�
�

b

a

�
�
�
�

�����

d

���������

���������

s

Figure 2.19: Breadth First

• Rename the loop predicate to bfs loop ,

• Change the order of the first two arguments in the append goal,

• Leave the definition of the auxiliary predicates unchanged.

The behaviour of breadth first/4 is shown in Fig. 2.21. The same paths are found as before, albeit in a
different order.

Exercise 2.6. Rewrite the definition of breadth first/4 in Fig. 2.20 using difference lists. Compare the
performance of your solution with that of the old version.

Hints. You may take the model solution of Exercise 2.5, p. 175, or your own solution, and make the necessary
changes: rename the loop predicate; modify the updating of the agenda (now represented as a difference list);
and, use extend path dl/3 as defined in the solution of Exercise 2.5. For later reference, the new version
should be placed in the same file as the earlier, list based version (i.e. bf.pl). �

2.5 Bounded Depth First Search

Analysing Depth First and Breadth First will show that (e.g. [29]), on average, to find a goal node,

• Depth First needs less computer memory than Breadth First,

• The time requirement of Breadth First is asymptotically comparable to that of Depth First, and,

Download free ebooks at bookboon.com

Applications of Prolog

69

Blind Search

} �
�

�

Modified Goal
(see Fig. 2.15,
p. 65)

�

} �� 	
Copy from Fig. 2.15, p. 65�

:- use module(links).

:- use module(searchinfo).

breadth first(Start,G Pred,C Pred,PathFound) :-

bfs loop([[Start]],G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

bfs loop([Path|],G Pred, ,Path) :- call(G Pred,Path).

bfs loop([[CurrNode|T]|Others],G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Others,Paths,NewOpenPaths),

bfs loop(NewOpenPaths,G Pred,C Pred,PathFound).

% auxiliary predicates ...

...

Figure 2.20: The File bf.pl – Breadth First with Path Checking

�

�

�

�

?- consult(bf).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% bf compiled 0.05 sec, 4,948 bytes

Yes

?- breadth first(s,goal path,link,Path).

Path = [s, d, e, f, g] ;

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

Figure 2.21: Interactive Session for breadth first/4

Download free ebooks at bookboon.com

Applications of Prolog

70

Blind Search

• Breadth First always finds the shortest path to the goal node (if there is one) whereas (for infinite search
trees) Depth First may fail to find a goal node even if one exists.

Bounded Depth First search, shown in Algorithm 2.5.1, p. 71, combines the idea of the two search algorithms:
it will explore the search tree up to a specified depth (the horizon) by Depth First. Bounded Depth First is
also the basis for the more sophisticated Iterative Deepening, to be discussed in the next section.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

71

Blind Search

Algorithm 2.5.1: Bounded DF(StartNode, G Pred, C Pred,
Horizon)

comment: Bounded Depth First Search.
Procedures are assumed available for

• Testing whether a path is a goal path by using
the procedure in G Pred;

• Finding successors of a node by using the con-
nectivity procedure in C Pred.

procedure IsPath(list)
comment: Returns a Boolean value.

Is application specific.

...

main
RootNode ← StartNode
OpenPaths ← [[RootNode]]
[[H |T]|TailOpenPaths] ← OpenPaths
ListLength ← Length([H |T])
PathLength ← ListLength− 1
while [H |T] is not a goal path

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if PathLength < Horizon

then

⎧⎪⎪⎨
⎪⎪⎩

SuccList ← successors of H
ONodes ← list of S ∈ SuccList with

IsPath([S, H |T])
NewPaths ← ExtendPath(ONodes, [H |T])

else
{
NewPaths ← []

OpenPaths ← NewPaths ++ TailOpenPaths
if OpenPaths = []
then return (failure)

[[H |T]|TailOpenPaths] ← OpenPaths
ListLength ← Length([H |T])
PathLength ← ListLength− 1

Path ← Reverse([H |T])
output (Path)

Exercise 2.7. In the query below, the predicate bounded df/5 is used to search the tree in Fig. 2.5 up to
level 5 for the goal node g.

?- bounded df(s,goal path,link,5,PathFound).

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

Download free ebooks at bookboon.com

Applications of Prolog

72

Blind Search

} �
�

�
�Loop Predicate b dfs loop/5

to be defined here
�

} �� 	
Copy from Fig. 2.15, p. 65�

:- module(bounded depth first,[bounded df/5]).7

:- use module(links).

:- use module(searchinfo).

bounded df(Start,G Pred,C Pred,Horizon,PathFound) :-

b dfs loop([[Start]],G Pred,C Pred,Horizon,PathFoundRev),

reverse(PathFoundRev,PathFound).

...

% auxiliary predicates ...

...

Figure 2.22: The File bdf.pl – Bounded Depth First (for Exercise 2.7)

No

Based on Algorithm 2.5.1, define bounded df/5 by completing the missing parts in Fig. 2.22.
Hint. The definition of b dfs loop/5 may be obtained from that of dfs loop/4 in Fig. 2.15 by augmenting

the latter with a new argument for the horizon. �

2.6 Iterative Deepening

Bounded Depth First search is invoked here repeatedly with a successively larger horizon. This may be performed
until a path to the goal node is found or until some CPU time limit is exceeded. We choose the former with
unit increment. An implementation and a test run are shown in Figs. 2.23 and 2.24, respectively.8 Iterative
Deepening may seem computationally wasteful as at any one stage the previous stage is recomputed but it can
be shown that it is asymptotically optimal (eg [29]).

Exercise 2.8. The interactive session in Fig. 2.24 illustrates that, on backtracking, Iterative Deepening will
rediscover the goal paths found earlier. Modify our implementation of Iterative Deepening such that this does
not happen, i.e. paths found earlier for a smaller horizon should be ignored.

Hint. Fig. 2.25 shows a sample session with this modified version. The previous horizon is recorded in the
database by means of the predicate lastdepth/1 . Goal paths shorter than the value herein are ignored. To
implement this, you will have to modify the first clause of b dfs loop/5 in bdf.pl. You will also have to
arrange for the updating of lastdepth/1 in the database. �

Exercise 2.9. Yet another, and perhaps the most usual form of Iterative Deepening will find the (leftmost)
goal node at the shallowest depth (presuming that one exists) and then stop searching. For our example, such
a version will respond as follows,

?- iterative deepening(s,goal path,link,PathFound).

7The predicate bounded df/5 is declared public because it will be used later in another module (see Sect. 2.6).
8The notes in Fig. 2.24 concerning the horizon refer to Fig 2.5, p. 51.

Download free ebooks at bookboon.com

Applications of Prolog

73

Blind Search

:- use module(bdf).

iterative deepening(Start,G Pred,C Pred,PathFound) :-

iterative deepening aux(1,Start,G Pred,C Pred,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

bounded df(Start,G Pred,C Pred,Depth,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

NewDepth is Depth + 1,

iterative deepening aux(NewDepth,Start,G Pred,C Pred,PathFound).

Figure 2.23: The File iterd.pl – Iterative Deepening

PathFound = [s, d, e, f, g] ;

No

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

74

Blind Search

�

�

�

�

?- consult(iterd).

% links compiled into edges 0.06 sec, 1,856 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% bdf compiled into bounded depth first 0.06 sec, 5,784 bytes

% iterd compiled 0.06 sec, 7,664 bytes

Yes

?- iterative deepening(s,goal path,link,PathFound).

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, e, f, g] ;

PathFound = [s, d, a, b, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

...

}
Horizon = 4�⎫⎬

⎭ Horizon = 5�⎫⎪⎪⎬
⎪⎪⎭ Horizon = 6�

Figure 2.24: Sample Session – Iterative Deepening

Implement this version of Iterative Deepening. �

Finally, notice that, for finite search trees, Iterative Deepening has an unpleasant feature not found with the
other blind search algorithms: if there is no goal node, Iterative Deepening won’t terminate.9 This will cause
problems in applications where a sequence of potential start nodes is supplied to the algorithm some of which
won’t lead to a goal node. (An example of this will be seen in Sect. 2.8).

2.7 The Module blindsearches

The implementations of the algorithms from the preceding sections have been put together in blindsearches.pl
to form the module blindsearches . This allows us to create an implementation of the network search problem
anew which then may serve as a template for other uses of blindsearches . The top level is netsearch.pl,
Fig. 2.26, p. 75. The following shows an interactive session using search/0 from netsearch.pl.

?- consult(netsearch).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

% blindsearches compiled into blindsearches 0.06 sec, 7,284 bytes

% netsearch compiled 0.06 sec, 14,312 bytes

?- search.

Enter start state (a/b/c/d/e/f/s)... s.

Select algorithm (df/df dl/bf/bf dl/bdf/id)... bdf.

9For example, if we apply the query

?- iterative deepening(u,goal path,link,PathFound).

with the database in links.pl (as augmented in Exercise 2.2, p. 59), we won’t get any response.

Download free ebooks at bookboon.com

Applications of Prolog

75

Blind Search

�

�

�

�

?- iterative deepening(s,goal path,link,PathFound).

PathFound = [s, d, e, f, g] ;

PathFound = [s, a, b, e, f, g] ;

PathFound = [s, a, d, e, f, g] ;

PathFound = [s, d, a, b, e, f, g] ;�� ��Ctrl +
�� ��C

Action (h for help) ? abort

% Execution Aborted

?- lastdepth(D).

D = 396

Yes

} No response
after this

�

} Last value of
horizon

�

Figure 2.25: Sample Session – Modified Iterative Deepening (for Exercise 2.8)

:- use module(links).

:- use module(searchinfo).

:- use module(blindsearches).

search :-

G = goal path,

get start state(S) ,

select algorithm(A) ,

(A = bdf, get horizon(Horizon) ; true), !,

((A = df, depth first(S,G,link,PathFound));

(A = df dl, depth first dl(S,G,link,PathFound));

(A = bf, breadth first(S,G,link,PathFound));

(A = bf dl, breadth first dl(S,G,link,PathFound));

(A = bdf, bounded df(S,G,link,Horizon,PathFound));

(A = id, iterative deepening(S,G,link,PathFound))),

show nodes(PathFound) ,

terminate .

% missing predicates (shaded) to be defined here ...

...

Figure 2.26: The File netsearch.pl (for Exercise 2.10)

Download free ebooks at bookboon.com

Applications of Prolog

76

Blind Search

Enter horizon... 5.

Nodes visited: s -> a -> b -> e -> f -> g

Stop search? (y/n) n.

Nodes visited: s -> a -> d -> e -> f -> g

Stop search? (y/n) y.

Yes

Exercise 2.10. Define the missing predicates (shaded) in Fig. 2.26. (You will have to use the built-in
predicate read/1 for reading a term. Notice that the input from the keyboard always finishes with a dot (.)
as shown above.) �

2.8 Application: A Loop Puzzle

2.8.1 The Puzzle

This is a more substantial example showing that some problems can be formulated as a network search problem
thereby making them amenable to a solution by the algorithms described earlier. The idea of the puzzle
considered here originates from the puzzle magazine [17].

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

77

Blind Search

We are given a rectangular board some positions of which are marked by circles (0) and sharps (#) as shown
in the upper half of Fig. 2.27, p. 78. The task is to place a closed loop of a rope onto the board such that the
following conditions are met:

• The rope connects contiguous positions horizontally or vertically but not diagonally. It does not self-
intersect.

• Each position is visited by the rope at most once. (This follows, of course, also from the fact that the
rope is not self-intersecting.) In particular, there may well be positions which are not visited at all.

• Each marked position is visited exactly once.

• Adjacent marks on the rope of the like kind (i.e. both circles or both sharps) are connected by a straight
piece of rope.

• Adjacent marks on the rope which are different (i.e. if one is a circle and the other is a sharp) are
connected by a piece of rope which takes a right angle turn.

A puzzle from [17] is solved in Fig. 2.27 by the model implementation. It is run interactively and carries out
the following steps in turn:

1. It displays a sketch of the board and the arrangement of the marks (circles and sharps).

2. It gives the user a choice between the various search algorithms.

3. It tries to solve the problem and, if a solution exists, it gives a pictorial display of the loop’s position on
the board.10 If no solution is found, loop/0 should fail. Furthermore, if there are several solutions, the
implementation should find all of them.

2.8.2 A ‘Hand-Knit’ Solution

The core question is obviously how the present problem translates to a network search problem. (For the time
being, we won’t be concerned with the generation of the interface and display of the loop found as they are
relatively straightforward, though laborious.)

As a first step, we want to illustrate by way of the specific case from Sect. 2.8.1 how the problem can be
solved by directly creating (i.e. defining by facts) the predicates needed by the module blindsearches . The
information concerning the specifics of the puzzle is defined in the file loop puzzle1.pl shown in Fig. 2.28.
Before defining the connectivity predicate which, as usual, will be called link/2 , we will have to find a suitable
representation for the system’s states. The rope will be pieced together segment by segment, i.e. by progressing
from one mark to the next. It seems therefore appropriate to identify the states of the system (i.e. the nodes
of the corresponding network) with rope segments connecting marked positions.

A list representation will be used for rope segments and progression in the list will be from right to left.
Thus, for example, movement from a circle at position pos(1,4) to a sharp at position pos(2,2) is indicated
by either of the following two segments.

[pos(2,2),pos(2,3),pos(2,4)] (2.1)

10A solution may be missed, however, if Bounded Depth First search is used. Furthermore, if Iterative Deepening is selected in
our implememtation, it will not terminate if the internally attempted start state does not lead to a solution.

Download free ebooks at bookboon.com

Applications of Prolog

78

Blind Search

�

�

�

�

?- consult(loop puzzle1).

% blindsearches compiled into blindsearches 0.00 sec, 7,284 bytes

% small_board compiled into small_board 0.00 sec, 6,224 bytes

% board compiled into board 0.05 sec, 7,696 bytes

% loops compiled into loops 0.11 sec, 31,028 bytes

% loop_puzzle1 compiled 0.11 sec, 32,324 bytes

Yes

?- loop.

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... df.

+-------+-------+-------+-------+-------+-------+
************************0	********#				
*			*	*	*
+---*---+-------+-------+---*---+---*---+---*---+					
*			*	*	*
#	#****************	*	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
*	************************0	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
#	0********************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	************************#********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
**0					
+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.

Yes

Figure 2.27: Sample Session – The Loop Puzzle

Download free ebooks at bookboon.com

Applications of Prolog

79

Blind Search

} �� 	
Top level module is in loops.pl��� 	
Number of rows �� 	
Number of columns�

�

:- use module(loops).

size(6,6).

circle(pos(1,4)). circle(pos(3,5)).

circle(pos(4,2)). circle(pos(6,6)).

sharp(pos(1,6)). sharp(pos(2,1)). sharp(pos(2,2)).

sharp(pos(4,1)). sharp(pos(5,5)).

Figure 2.28: The File loop puzzle1.pl

and
[pos(2,2),pos(1,2),pos(1,3)] (2.2)

These segments are indicated by solid arrows in Fig. 2.29. Notice that the position at which the segment
arrives, here pos(2,2), features as the head of its list representation whereas the board position from which
the segment originates is omitted from the list.

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

80

Blind Search

�
� �

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+
1 2 3 4 5 6

Figure 2.29: Constructing a Solution of the Loop Puzzle

(This will enable us simply to string together the final rope from its segments without being concerned with
duplication of some positions.) The marked positions connected by a segment will be adjacent on the rope of
which the segment is part of. We require therefore that the only marked position be the head of the segment’s
list representation. Thus, for example,

[pos(4,1),pos(3,1),pos(2,1),pos(1,1),pos(1,2),pos(1,3)]

is not a segment as it meets the marked position pos(2,1) ‘on its way’ from pos(1,4) to pos(4,1). We now
take the segment

[pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)] (2.3)

which is deemed to stretch from the sharp at pos(5,5) to the circle at pos(1,4). This is indicated by the
dashed arrow in Fig. 2.29. (The other potential segment connecting the same positions as the one in (2.3) must
be ruled out since it is blocked by the mark (circle) in pos(3,5).) To indicate that the segment in (2.2) is
linked to that in (2.3), we declare in the database the following fact:

link([pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)], [pos(2,2),pos(1,2),pos(1,3)]).

Notice that the order of the arguments in link/2 matters: according to our interpretation, the segment in the
first argument is visited first, followed by the segment in the second argument. The corresponding fact linking
the segments in (2.3) and (2.1) does not hold if self-intersecting loops are excluded. Let us assume, however,
that at this stage we do not care whether a rope is self-intersecting since this will be attended to later when we
define the predicate is path/1 . Then, a more concise and more general form of the above fact is given by

link([pos(1,4)|_], [pos(2,2),pos(1,2),pos(1,3)]).

(This simply states that the segment [pos(2,2),pos(1,2),pos(1,3)] will join any segment pointing at
pos(1,4).) There are three other segments also originating from the circle in pos(1,4); they give rise to
the following fact each.

link([pos(1,4)|_], [pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

link([pos(1,4)|_], [pos(2,2),pos(2,3),pos(2,4)]).

link([pos(1,4)|_], [pos(5,5),pos(5,4),pos(4,4),pos(3,4),pos(2,4)]).

Download free ebooks at bookboon.com

Applications of Prolog

81

Blind Search

} �� 	
Define link/2 here (see Exercise 2.11, p. 81)�

} ��
�
�The goal path

has 9 segments
�} �
�

�
�The goal path is

closed

�

⎫⎪⎪⎬
⎪⎪⎭
�
�

�

Exclude self-
intersecting
paths

�

:- use module(blindsearches).

...

start state([pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

goal path([H|T]) :- length([H|T],9),

last(E,T),

link(H,E).

is path([H|T]) :- not(prohibit([H|T])).

prohibit([S|[H|]]) :- not(disjoint(S,H)).

prohibit([S|[|T]]) :- prohibit([S|T]).

disjoint([],).

disjoint([H|T],S) :- not(member(H,S)), disjoint(T,S).

Figure 2.30: The File hand knit.pl

In a similar fashion, the segments originating from the circle in pos(3,5) give rise to the facts

link([pos(3,5)|_], [pos(1,6),pos(2,6),pos(3,6)]).

link([pos(3,5)|_], [pos(1,6),pos(1,5),pos(2,5)]).

link([pos(3,5)|_], [pos(2,1),pos(3,1),pos(3,2),pos(3,3),pos(3,4)]).

link([pos(3,5)|_], [pos(2,2),pos(3,2),pos(3,3),pos(3,4)]).

link([pos(3,5)|_], [pos(2,2),pos(2,3),pos(2,4),pos(2,5)]).

link([pos(3,5)|_], [pos(4,1),pos(3,1),pos(3,2),pos(3,3),pos(3,4)]).

Exercise 2.11. Complete the definition of link/2 in this fashion. There will be 37 facts in total forming
9 groups, each group corresponding to a marked position. (You will find the solution of this exercise in the file
hand knit.pl.) �

The definition of link/2 and those of some other predicates11 are in the file hand knit.pl, partially shown
in Fig. 2.30. It is also seen from hand knit.pl that one of the segments has been chosen as a start state by
visual inspection of Fig. 2.29.12 We are now in a position to find a solution interactively. After consulting
hand knit.pl, we invoke depth first/4 as follows.

?- start state(S), depth first(S,goal path,link, PathFound),

write term(PathFound,[]).

[[pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)],

[pos(4, 1), pos(3, 1)],

[pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1)],

[pos(5, 5), pos(5, 6)],

11Notice that the predicate is path/1 in hand knit.pl is ‘visible’ from the module blindsearches without it being exported.
12 A reasoned way to get hold of a start state is as follows. Pick any marked position and try out all segments originating from

it. If there is a solution to the problem, then at least one of the segments thus produced may serve as a start state since the rope
must pass through this position in particular.

Download free ebooks at bookboon.com

Applications of Prolog

82

Blind Search

[pos(4, 2), pos(5, 2), pos(5, 3), pos(5, 4)],

[pos(1, 6), pos(2, 6), pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3)],

[pos(3, 5), pos(2, 5), pos(1, 5)],

[pos(2, 2), pos(3, 2), pos(3, 3), pos(3, 4)],

[pos(1, 4), pos(2, 4), pos(2, 3)]]

A list comprising 9 path segments has been returned. It is to be read from left to right but the list representations
of the segments are read from right to left. It is perhaps easier to interpret the result if we subsequently reverse
this list and then flatten it. The list thus produced will be a right-to-left display of the positions visited.

?- start state(S), depth first(S,goal path,link, PathFound),

reverse(PathFound, R), flatten(R, F), write_term(F,[]).

[pos(1, 4), pos(2, 4), pos(2, 3), pos(2, 2), pos(3, 2), pos(3, 3),

pos(3, 4), pos(3, 5), pos(2, 5), pos(1, 5), pos(1, 6), pos(2, 6),

pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3), pos(4, 2),

pos(5, 2), pos(5, 3), pos(5, 4), pos(5, 5), pos(5, 6), pos(6, 6),

pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1),

pos(4, 1), pos(3, 1), pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)]

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

83

Blind Search

:- use module(blindsearches).

:- use module(automated).

size(6,6).

circle(pos(1,4)). circle(pos(3,5)).

circle(pos(4,2)). circle(pos(6,6)).

sharp(pos(1,6)). sharp(pos(2,1)).

sharp(pos(2,2)). sharp(pos(4,1)). sharp(pos(5,5)).

Figure 2.31: The File loop puzzle1a.pl

The path thus obtained is seen to be the one shown in Fig. 2.27.13

2.8.3 Project: Automating the Solution Process

In the ‘hand-knit’ solution from the previous section, the information specific to the puzzle was conveyed to
Prolog via the predicate link/2 , defined in hand knit.pl by Prolog facts which were arrived at laboriously
by visual inspection of loop puzzle1.pl. This arrangement, though unsatisfactory, has been useful in showing
that this type of puzzle can be solved as a network search problem. We are aiming for a more flexible and
automated implementation, however, which will solve any problem of this type by combining the problem-
specific information from a file like loop puzzle1.pl with a rule-based and not problem-dependent definition
of link/2 .14

You will be asked to find a rule-based definition of link/2 in Exercise 2.12 below. The suggested file
structure is as follows. The information concerning this particular puzzle should be recorded in the file
loop puzzle1a.pl15 as shown in Fig 2.31, p. 83. All the other predicates pertinent to this type of puzzle
should be defined in the file automated.pl as outlined in Fig. 2.32, p. 84.

Exercise 2.12. To get a semi-automated solution16 of the loop puzzle as indicated by the interactive session
in Fig. 2.35, p. 88, augment the file hand knit.pl by defining link/2 by rules. The augmented file will be the
first version of automated.pl. Below you will find some guidance on the implementation of link/2 . �

Implementing link/2

At variance with the fact-based version of link/2 , now linking intersecting segments will be disallowed. Thus,
for example, whereas

13To obtain a loop, the positions pos(1,4) and pos(1,3) have been joined since they are the two extreme entries (first and last)
of the path found.

14Another approach more in tune with Sect. 2.8.2 will first create in the database at runtime the problem-specific facts defining
link/2 . (Alternatively, a problem-specific (temporary) file akin to hand knit.pl may be created and consulted at runtime.) This
should be accomplished by a second order predicate reading the definitions of size/2 , circle/1 and sharp/1 from loop puzzle1.pl

(or its analogue). Subsequently, run the search as in Sect. 2.8.2.
15The suffix ‘a’ in the filename indicates that the solution process is automated.
16The initial segment is supplied via start state/1 by manual input. A fully automated solution is considered in Exercise 2.13.

Download free ebooks at bookboon.com

Applications of Prolog

84

Blind Search

�� 	
For Exercise 2.13 only�} �� 	
Define link/2 here (see Exercise 2.12)�} �
�

�
�Define maybe start state/1 here (see

Exercise 2.13)

�

} �� 	
Define number of marks/1 here (see Exercise 2.13)�

⎫⎪⎪⎬
⎪⎪⎭
�
�

�

Modified definition
of goal path/1

(see Exercise 2.13)

�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
�

�

Copy from
hand knit.pl

(see Fig. 2.30)

�

:- module(auto,[link/2,maybe start state/1︸ ︷︷ ︸,goal path/1,is path/1]).

...

...

goal path([H|T]) :- number of marks(M),

length([H|T],M),

last(E,T),

link(H,E).

...

is path([H|T]) :- not(prohibit([H|T])).

prohibit([S|[H|]]) :- not(disjoint(S,H)).

prohibit([S|[|T]]) :- prohibit([S|T]).

disjoint([],).

disjoint([H|T],S) :- not(member(H,S)),

disjoint(T,S).

Figure 2.32: The File automated.pl

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

85

Blind Search

link([pos(5,5),pos(4,5),pos(4,4),pos(4,3)],

[pos(1,4),pos(2,4),pos(3,4),pos(4,4),pos(5,4)]).

follows from the definition of link/2 in hand knit.pl, it cannot be inferred by our rule-based version of link/2
in automated.pl:

?- link([pos(5,5),pos(4,5),pos(4,4),pos(4,3)],S).

S = [pos(4, 2), pos(5, 2), pos(5, 3), pos(5, 4)] ;

S = [pos(6, 6), pos(5, 6)] ;

S = [pos(6, 6), pos(6, 5)] ;

No

Does it matter if this additional condition is imposed? No, the final result won’t be affected as paths containing
self-intersecting linked segments are themselves self-intersecting and will therefore be disallowed by is path/1 .
However, whereas link/2 was previously defined by a relatively small number of facts, the resulting network is
more complex. It will be seen that the imposed condition is easily incorporated in the definition of link/2 and,
as indicated above, it should give rise to a simpler network, i.e. to a one with a lesser number of connections.
(You will be asked to compare the two networks as part of Exercise 2.14, p. 87.)

The dashed arrows in Fig. 2.33 stand for segments connected to [pos(5,5),pos(4,5),pos(4,4),pos(4,3)]

which itself is shown as a continuous arrow. We require furthermore that

Download free ebooks at bookboon.com

Applications of Prolog

86

Blind Search

�
�

�
�

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+
1 2 3 4 5 6

Figure 2.33: Constructing a Loop

• link/2 should fail if the first argument is not unified with a valid segment:

?- link([pos(5,3),pos(6,3),pos(6,4),pos(6,5)], S).

No

• link/2 should also fail if the arguments are unified with valid segments, that, however, are not linked:

?- link([pos(6,6),pos(5,6)], [pos(6,6),pos(6,5)]).

No

• link/2 should succeed if the arguments are unified with linked segments:

?- link([pos(2,1),pos(3,1)], [pos(2,2)]).

Yes

We now want to indicate how link/2 should be defined. Let us assume that two marked positions of the
like kind should be linked. This will be accomplished by the clause

link([Pos1|T1],[Pos2|T2]) :- ((circle(Pos1), circle(Pos2)); (sharp(Pos1), sharp(Pos2))),

straight(Pos1,[Pos2|T2],Pos2),

not((member(Pos,T2),(circle(Pos);sharp(Pos)))),

disjoint([Pos1|T1],[Pos2|T2]).

where the auxiliary predicate straight(+P1,?S,+P2) connects any two positions P1 and P2 sharing the same
row or column; details of what is required may be gleaned from the query below.

?- auto:straight(pos(3,4),S,pos(3,8)).

S = [pos(3, 8), pos(3, 7), pos(3, 6), pos(3, 5)]

?- auto:straight(pos(8,3),S,pos(4,3)).

S = [pos(4, 3), pos(5, 3), pos(6, 3), pos(7, 3)]

(We use the prefix auto in the above query as straight/3 is not visible from outside the module auto .)
You are recommended to use the built-in predicates bagof/3 , between/3 and reverse/2 in your definition of
straight/3 .

The corresponding clause of link/2 for linking marked positions of an unlike kind uses the auxiliary predicate
turn(+P1,?R,+P2) where the positions P1 and P2 (not sharing the same row or column) are linked by the list
R taking a right angle turn; for example,

Download free ebooks at bookboon.com

Applications of Prolog

87

Blind Search

�

�

�

�

?- consult(loop puzzle1a).

...

?- maybe start state(S), depth first(S,goal path,link, PathFound),

reverse(PathFound, R), flatten(R, F), write term(F,[]).

[pos(1, 4), ..., pos(1, 3)]

Yes

Figure 2.34: Running the Automated Implementation of the Loop Puzzle

?- auto:turn(pos(6,4),R,pos(4,1)).

R = [pos(4, 1), pos(5, 1), pos(6, 1), pos(6, 2), pos(6, 3)]

?- auto:turn(pos(8,3),R,pos(4,2)). 17

R = [pos(4, 2), pos(5, 2), pos(6, 2), pos(7, 2), pos(8, 2)]

To define turn/3 , use straight/3 and append/3 .

Fully Automated Implementation

Exercise 2.13. To get an automated solution of the loop puzzle as indicated by the interactive session in
Fig. 2.34, now augment the file automated.pl as follows.

• Define the predicate maybe start state/1 , and make it a visible predicate by augmenting the module

directive as indicated in Fig. 2.32. It should return on backtracking all segments emanating from an
arbitrary but fixed marked position. As explained in footnote 12, p. 81, one of the segments returned by
maybe start state/1 will form part of the loop we are looking for.

• Define the predicate number of marks/1 and modify the definition of goal path/1 as indicated in
Fig. 2.32.

�

Exercise 2.14. (This exercise explores the idea mentioned in footnote 14, p. 83.) The ‘hand-knit’ solution
outlined in Sect. 2.8.2 involved a manual implementation of link/2 by defining it by Prolog facts. These facts
were, of course, specific to the puzzle to be solved. Having now defined link/2 by rules not referring to the
particulars of the puzzle at hand, we have been able to automate the solution process. An alternative closer
to the original idea would be automatically to define in the database link/2 by the facts applicable to the
particular problem. Use link/2 to define by facts an equivalent new link predicate and use it to solve the
loop puzzle. Determine the number of nodes and the number of directed edges of the corresponding network.
Determine these quantities also for the network associated with the ‘hand-knit’ solution (Sect. 2.8.2) to confirm
that the latter is indeed more complex. �

17The L-shaped segment degenerates here into a straight line since it connects positions in adjacent columns.

Download free ebooks at bookboon.com

Applications of Prolog

88

Blind Search

⎫⎬
⎭ Manual definition

of start state/1
�

�

�

�

�

?- consult(loop puzzle1a).

% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes

% automated compiled into auto 0.00 sec, 5,752 bytes

% loop puzzle1a compiled 0.05 sec, 14,576 bytes

Yes

?- consult(user).

|: start state([pos(2,1),pos(1,1),pos(1,2),pos(1,3)]).

|:
�� ��Ctrl +
�� ��D

% user compiled 34.11 sec, 388 bytes

Yes

?- start state(S), depth first(S,goal path,link, PathFound), reverse(PathFound, R), flatten(R, F),

write term(F,[]).

[pos(1, 4), pos(2, 4), pos(2, 3), pos(2, 2), pos(3, 2), pos(3, 3), pos(3, 4), pos(3, 5), pos(2, 5), pos(1, 5),

pos(1, 6), pos(2, 6), pos(3, 6), pos(4, 6), pos(4, 5), pos(4, 4), pos(4, 3), pos(4, 2), pos(5, 2), pos(5, 3),

pos(5, 4), pos(5, 5), pos(5, 6), pos(6, 6), pos(6, 5), pos(6, 4), pos(6, 3), pos(6, 2), pos(6, 1), pos(5, 1),

pos(4, 1), pos(3, 1), pos(2, 1), pos(1, 1), pos(1, 2), pos(1, 3)]

Yes

Figure 2.35: Semi-Automated Solution of the Loop Puzzle

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

89

Blind Search

�

�

�

�

�

}
�

size/2 , circle/1 and sharp/1 to
be taken from loop puzzle1a.pl

(see Fig. 2.31, p. 83)

?- consult([loop puzzle1a| {z }, small board]).

...

% loop_puzzle1a compiled 0.05 sec, 15,076 bytes

% small_board compiled into small_board 0.06 sec, 6,216 bytes

Yes

?- size(Row, Col), bagof(C,circle(C), Cs),

bagof(S,sharp(S), Ss),

make small board(Row, Col, Cs, Ss, Board),

disp board(Board).

+---+---+---+---+---+---+
| | | | 0 | | # | 1
+---+---+---+---+---+---+
| # | # | | | | | 2
+---+---+---+---+---+---+
| | | | | 0 | | 3
+---+---+---+---+---+---+
| # | 0 | | | | | 4
+---+---+---+---+---+---+
| | | | | # | | 5
+---+---+---+---+---+---+
| | | | | | 0 | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Yes

Figure 2.36: Session for Displaying the Board

2.8.4 Project: Displaying the Board

Exercise 2.15. To display the marks’ position on the board, define

• make small board(+Row,+Col,+Circles,+Sharps,-Board) for unifying Board with the list of lines to
be displayed where each line itself is represented as a list of one-character atoms; and,

• disp board(+Board) for displaying Board on the terminal.

Fig. 2.36 shows how these predicates should behave. (The model solution is in small board.pl.) �

Exercise 2.16. To display a path on the board, define

• make board(+Row,+Col,+Path,-Board) for creating a list-of-lists representation of Board , and,

• show board(+Board) for displaying Board on the terminal.

Path is unified with a list of contiguous co-ordinate entries of the form pos(. . .,. . .) . Fig. 2.37 illustrates the
point for a 2 × 5 board. (The model solution is in board.pl.) �

Download free ebooks at bookboon.com

Applications of Prolog

90

Blind Search

�

�

�

�

?- consult(board).

% board compiled into board 0.00 sec, 8,216 bytes

?- make board(2,5,[pos(1,1),pos(1,2),pos(2,2),pos(2,3),pos(2,4),pos(1,4),pos(1,5)], Board),

show board(Board).

+-------+-------+-------+-------+-------+

| | | | | |

| ********* | | ********* |

| | * | | * | |

+-------+---*---+-------+---*---+-------+

| | * | | * | |

| | ***************** | |

| | | | | |

+-------+-------+-------+-------+-------+

Yes

Figure 2.37: Illustrating Exercise 2.16

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

91

Blind Search

�

�

�

�

?- make board(2,5,[pos(1,1),pos(1,2),pos(2,2),pos(2,3),pos(2,4),pos(1,4),pos(1,5)], Board),

change board(’c’,[pos(1,2),pos(1,4),pos(2,2),pos(2,4)], Board, NewBoard),

show board(NewBoard).

+-------+-------+-------+-------+-------+

| | | | | |

| ********c | | c******** |

| | * | | * | |

+-------+---*---+-------+---*---+-------+

| | * | | * | |

| | c***************c | |

| | | | | |

+-------+-------+-------+-------+-------+

Yes

Figure 2.38: Illustrating Exercise 2.17

Exercise 2.17. Finally, for putting circles and sharps on the board, a predicate for writing a given character
to specified positions on the board will be useful. This will be accomplished by change board/4 as illustrated in
Fig. 2.38. (In the example we mark corner positions of the path with the character ‘c’.) Define change board/4 .
(The model solution is in board.pl.) �

2.8.5 Complete Implementation

All the building blocks for solving the puzzle and displaying the loop found are now in place. In fact, this can
be done interactively as shown in Fig. 2.39.

Exercise 2.18. It is very tedious to solve the loop puzzle interactively as shown in Fig. 2.39. Combine
now the predicates from above to create a more user-friendly implementation which can be run as shown in
Fig. 2.27, p. 78. You may model your implementation of the dialogue on that in netsearch.pl (see Fig. 2.26,
p. 75). (For the model solution, see loops.pl.) �

2.8.6 Full Board Coverage

Exercise 2.19. Suppose now that the specification is made somewhat stricter. In addition to the initial require-
ments we now also want every small square to be visited by the loop. You should modify your implementation
to include this new feature.

Notes.

1. Whereas the earlier puzzle has a unique solution which happens to visit every position (even if we don’t
insist on this), the case shown in Fig. 2.40 (with the data in loop puzzle2.pl) is more complex and will
admit solutions of both kinds (Figs. 2.41 and 2.42). Use loop puzzle2.pl for testing your solution.

Download free ebooks at bookboon.com

Applications of Prolog

92

Blind Search

�

�

�

�

?- consult([loop puzzle1a, board]).

% blindsearches compiled into blindsearches 0.05 sec, 7,380 bytes

% automated compiled into auto 0.00 sec, 6,252 bytes

% loop_puzzle1a compiled 0.05 sec, 15,076 bytes

% board compiled into board 0.06 sec, 8,168 bytes

?- maybe start state(Start),

depth first(Start,goal path,link, PathFound),

reverse(PathFound, Rev), flatten(Rev, F), last(L, F),

size(Row, Col), make board(Row, Col,[L| F], B0),

bagof(C,circle(C), Cs), change board(’0’, Cs, B0, B1),

bagof(S,sharp(S), Ss), change board(’#’, Ss, B1, B2),

show board(B2).

+-------+-------+-------+-------+-------+-------+
************************0	********#				
*			*	*	*
+---*---+-------+-------+---*---+---*---+---*---+					
*			*	*	*
#	#****************	*	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
*	************************0	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
#	0********************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	************************#********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
**0					
+-------+-------+-------+-------+-------+-------+

Yes

Figure 2.39: Solving the Puzzle Interactively. (See Exercise 2.18.)

Download free ebooks at bookboon.com

Applications of Prolog

93

Blind Search

+---+---+---+---+---+---+---+---+
| # | | | | | # | | # | 1
+---+---+---+---+---+---+---+---+
| | | | | | | 0 | | 2
+---+---+---+---+---+---+---+---+
| | | | | | # | | # | 3
+---+---+---+---+---+---+---+---+
| | 0 | | | | | | | 4
+---+---+---+---+---+---+---+---+
| | | 0 | | | | 0 | | 5
+---+---+---+---+---+---+---+---+
| | | | # | # | | | | 6
+---+---+---+---+---+---+---+---+
| | | | | | # | | | 7
+---+---+---+---+---+---+---+---+
| | 0 | | | | | 0 | | 8
+---+---+---+---+---+---+---+---+
| 0 | | | | | | | | 9
+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Figure 2.40: Illustrating Exercise 2.19

2. You may find that due to stack overflow your Prolog implementation won’t be able to solve this more
complex puzzle by Breadth First because the agenda will become very large (Sect. 2.5).

�

2.8.7 Avoiding Multiple Solutions

This may be another desired feature of the implementation: Every loop satisfying the specifications should be
displayed only once. There are two ways a solution may be discovered more than once.

1. As loops can be traversed in two directions, both versions will be found even though the display won’t
allow us to distinguish between them. To illustrate the point, let us consider the loop shown in Fig. 2.42.
We take pos(2,7) to be the seed position. Then the loop can be built up by starting with the segment

[pos(5,7), pos(4,7), pos(3,7)]

bearing in mind that segments are read from right to left. Alternatively,

[pos(1,1), pos(2,1), pos(2,2), pos(2,3), pos(2,4), pos(2,5), pos(2,6)]

may also be taken as the starting segment emanating from the same seed. It starts the loop in the opposite
direction. We won’t be concerned here with duplication due to this cause; we simply accept that as far
as this cause is concerned each solution of the puzzle will be displayed exactly twice.

2. The second cause for finding multiple instances of the same loop is elusive and it won’t arise with every
test case. The case shown in Fig. 2.42 is, however, one of those where this will occur. One of the segments
emanating from the seed position pos(2,7) is [pos(1,6), pos(1,7)], pointing to the sharp in pos(1,6).
The same segment can also be thought of, however, as emanating from the sharp in pos(1,8). This is

Download free ebooks at bookboon.com

Applications of Prolog

94

Blind Search

+-------+-------+-------+-------+-------+-------+-------+-------+
| | | | | | | | |
| #***************************************#***************# |
| * | | | | | | | * |
+---*---+-------+-------+-------+-------+-------+-------+---*---+
*							*
**0	*						
						*	*
+-------+-------+-------+-------+-------+-------+---*---+---*---+							
						*	*
**#	*	#					
*					*	*	*
+---*---+-------+-------+-------+-------+---*---+---*---+---*---+							
*					*	*	*
*	0********************************	*	*				
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	*	0*******************************0	*				
*	*	*					*
+---*---+---*---+---*---+-------+-------+-------+-------+---*---+							
*	*	*					*
*	*	********#*******#			*		
*	*			*			*
+---*---+---*---+-------+-------+---*---+-------+-------+---*---+							
*	*			*			*
*	*			*	#********	*	
*	*			*	*	*	*
+---*---+---*---+-------+-------+---*---+---*---+---*---+---*---+							
*	*			*	*	*	*
*	0************************	*	0********				
*					*		
+---*---+-------+-------+-------+-------+---*---+-------+-------+							
*					*		
0**							
+-------+-------+-------+-------+-------+-------+-------+-------+

Figure 2.41: Some positions not visited

+-------+-------+-------+-------+-------+-------+-------+-------+
| | | | | | | | |
| #***************************************#***************# |
| * | | | | | | | * |
+---*---+-------+-------+-------+-------+-------+-------+---*---+
*							*
**0	*						
						*	*
+-------+-------+-------+-------+-------+-------+---*---+---*---+							
						*	*
**#	*	#					
*					*	*	*
+---*---+-------+-------+-------+-------+---*---+---*---+---*---+							
*					*	*	*
*	0************************	*	*	*			
*	*			*	*	*	*
+---*---+---*---+-------+-------+---*---+---*---+---*---+---*---+							
*	*			*	*	*	*
*	*	0********	*	*	0	*	
*	*	*	*	*	*	*	*
+---*---+---*---+---*---+---*---+---*---+---*---+---*---+---*---+							
*	*	*	*	*	*	*	*
*	*	*	#*******#	*	*	*	
*	*	*			*	*	*
+---*---+---*---+---*---+-------+-------+---*---+---*---+---*---+							
*	*	*			*	*	*
*	*	************************#	*	*			
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	0***************************************0	*					
*							*
+---*---+-------+-------+-------+-------+-------+-------+---*---+							
*							*
0**							
+-------+-------+-------+-------+-------+-------+-------+-------+

Figure 2.42: All positions visited

Download free ebooks at bookboon.com

Applications of Prolog

95

Blind Search

yet another starting segment giving rise to the same loop. For this version of the loop, the last segment
will be [pos(1,8), pos(2,8)], pointing at the position where the loop was mistakenly deemed to have
started from. Situations such as this will be avoided if we stipulate that the head of the last segment be
identical to the seed position; an augmented definition of goal path/1 to reflect this, is shown in (P-2.1).

Prolog Code P-2.1: Augmented definition of goal path/1

1 goal_path([LastSegment|T]) :- number of marks(M),

2 length([LastSegment|T],M),

3 last(FirstSegment,T),

4 link(LastSegment,FirstSegment),

5 seed([SeedPosition]), % added goal

6 LastSegment = [SeedPosition|_]. % added goal

2.8.8 Variants of the Loop Puzzle

A Loop with ‘Kinks’

In this loop puzzle from [18], one symbol is used only, the circle (0) say, for marking some positions on a
rectangular board. We are required to find a loop such that

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

96

Blind Search

• Each board position should be visited by the loop exactly once.

• Pairs of marks lying adjacent on the loop should be connected by L-shaped segments (which may be
referred to as kinks).

An example from [18] is solved by the model implementation in Fig. 2.43.
Exercise 2.20. Write a Prolog solution for the above loop puzzle. It may be assumed that not all four

corner positions are marked. (This assumption will allow a start state (i.e. an initial loop segment) to be ‘grown’
from this empty corner.) It may also be assumed that top and bottom rows, and leftmost and rightmost columns
all contain at least one mark.

You may retain the structure of the earlier implementation. Use the modules small board and board as
before for displaying the positions of the marks and that of the loop. The puzzle specific source files for the
model solution are kinks.pl and kinks1.pl – kinks5.pl. �

A ‘Straight’ Loop

This puzzle originates from [16]. As before, one symbol is used only for marking some positions on a rectangular
board, the circle (0), say. We want to find a loop such that

• Each board position is visited by the loop exactly once.

• Marked positions are traversed without a right angle turn; hence the attribute straight.

An example from [16] is solved by the model implementation in Fig. 2.44.
Exercise 2.21. Write a Prolog implementation for solving the above loop puzzle.

Hints.

1. In the model solution, all viable loop segments of length three form the system states; they may be denoted,
for instance, by a term state/3 with its arguments standing for three contiguous board positions. Given
some state, the link/2 predicate will generate all its children as shown in the queries below for the puzzle
in Fig. 2.44.

?- link(state(pos(3,3),pos(2,3),pos(2,4)),S).

S = state(pos(3, 2), pos(3, 3), pos(2, 3)) ;

S = state(pos(3, 4), pos(3, 3), pos(2, 3)) ;

S = state(pos(4, 3), pos(3, 3), pos(2, 3)) ;

No

?- link(state(pos(3,4),pos(3,3),pos(2,3)),S).

S = state(pos(3, 5), pos(3, 4), pos(3, 3)) ;

No

It is seen that linked segments overlap by one position and that the state/3 term can be thought of as a
‘window’ of size three progressing to the left. The second query above shows that the mark in pos(3,4)

is traversed by a straight segment.

2. Because of the straightness condition, there can’t be any marks in the corners. We may therefore place
the initial segment in the top left-hand corner.

The files straightloop.pl and straightloop1.pl – straightloop3.pl are the puzzle specific source for the
model solution. �

Download free ebooks at bookboon.com

Applications of Prolog

97

Blind Search

�

�

�

�

}�

For displaying the boards, use the
modules small board and board

as specified in Sect. 2.8.4.

?- consult(kinks5).
% blindsearches compiled into blindsearches 0.00 sec, 7,312 bytes

% small_board compiled into small_board 0.00 sec, 6,224 bytes
% board compiled into board 0.00 sec, 7,696 bytes
% kinks compiled into kinks 0.00 sec, 34,736 bytes

% kinks5 compiled 0.10 sec, 36,480 bytes
Yes

?- loop.
+---+---+---+---+---+---+---+---+
| | | | 0 | | | | 0 | 1
+---+---+---+---+---+---+---+---+
| | 0 | | | 0 | | | | 2
+---+---+---+---+---+---+---+---+
| | | | 0 | | 0 | | | 3
+---+---+---+---+---+---+---+---+
| | 0 | | | | | | | 4
+---+---+---+---+---+---+---+---+
| | | | | 0 | | 0 | | 5
+---+---+---+---+---+---+---+---+
| | | 0 | | | 0 | | | 6
+---+---+---+---+---+---+---+---+
| | | 0 | | 0 | | | 0 | 7
+---+---+---+---+---+---+---+---+
| 0 | | | 0 | | | | | 8
+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... id.

+-------+-------+-------+-------+-------+-------+-------+-------+
************************0	************************0						
*			*	*			*
+---*---+-------+-------+---*---+---*---+-------+-------+---*---+							
*			*	*			*
*	0****************	0****************	*				
*	*					*	*
+---*---+---*---+-------+-------+-------+-------+---*---+---*---+							
*	*					*	*
*	****************0	********0	*	*			
*			*	*	*	*	*
+---*---+-------+-------+---*---+---*---+---*---+---*---+---*---+							
*			*	*	*	*	*
*	0********	*	*	*	*	*	
*	*	*	*	*	*	*	*
+---*---+---*---+---*---+---*---+---*---+---*---+---*---+---*---+							
*	*	*	*	*	*	*	*
*	*	*	********0	********0	*		
*	*	*					*
+---*---+---*---+---*---+-------+-------+-------+-------+---*---+							
*	*	*					*
*	*	0****************	0****************				
*	*			*	*		
+---*---+---*---+-------+-------+---*---+---*---+-------+-------+							
*	*			*	*		
*	********0	********0	****************0				
*		*	*				*
+---*---+-------+---*---+---*---+-------+-------+-------+---*---+							
*		*	*				*
0****************	0********************************						
+-------+-------+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.
Yes

Figure 2.43: Solving the Loop Puzzle – Variant One

Download free ebooks at bookboon.com

Applications of Prolog

98

Blind Search

�

�

�

�

}�

For displaying the boards, use the
modules small board and board

as specified in Sect. 2.8.4.

?- consult(straightloop3).

% blindsearches compiled into blindsearches 0.00 sec, 7,328 bytes
% small_board compiled into small_board 0.00 sec, 6,224 bytes

% board compiled into board 0.00 sec, 7,712 bytes
% straightloop compiled into straightloop 0.00 sec, 30,048 bytes

% straightloop3 compiled 0.00 sec, 31,192 bytes
Yes
?- loop.

+---+---+---+---+---+---+
| | | | | | | 1
+---+---+---+---+---+---+
| | 0 | | 0 | | | 2
+---+---+---+---+---+---+
| 0 | | | 0 | | | 3
+---+---+---+---+---+---+
| | | 0 | | | | 4
+---+---+---+---+---+---+
| | | 0 | | 0 | | 5
+---+---+---+---+---+---+
| | | | 0 | | | 6
+---+---+---+---+---+---+

1 2 3 4 5 6

Select algorithm (df/df_dl/bf/bf_dl/bdf/id)... id.

+-------+-------+-------+-------+-------+-------+
*********	*************************				
*	*	*			*
+---*---+---*---+---*---+-------+-------+---*---+					
*	*	*			*
*	0	********0********	*		
*	*			*	*
+---*---+---*---+-------+-------+---*---+---*---+					
*	*			*	*
0	****************0********	*			
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
*	********0************************				
*	*				
+---*---+---*---+-------+-------+-------+-------+					
*	*				
*	********0***************0********				
*					*
+---*---+-------+-------+-------+-------+---*---+					
*					*
************************0****************					
+-------+-------+-------+-------+-------+-------+

Stop search? (y/n) y.

Yes

Figure 2.44: Solving the Loop Puzzle – Variant Two

Download free ebooks at bookboon.com

Applications of Prolog

99

Blind Search

3 4 5

8 2

7 1 6

Initial State

1 2 3

8 4

7 6 5

Goal State

Figure 2.45: An Eight Puzzle

2.9 Application: The Eight Puzzle

2.9.1 The Puzzle

This is a standard example in AI and it is used for assessing the performance of search algorithms [27].

There are eight tiles, numbered 1 to 8, on a 3 × 3 board. The objective is to transform an initial tile
arrangement into a given goal state; an example is shown in Fig. 2.45. In each transformation step, a new tile
arrangement should be obtained by sliding a tile to the empty position.

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

100

Blind Search

The number of states of this puzzle is 9! = 362, 880. However, the state space is known to fall into two
distinct components the states of each of which are mutually reachable from within but not from the other
component’s states. Below we show another popular choice for the goal state, residing in the other component.

1 2 3

4 5 6

7 8

Alternative Goal State

Thus, if this latter arrangement is also admitted as a goal state, the puzzle will be solvable for any initial state.

2.9.2 Prolog Implementation

A sample run of the model implementation is shown in Fig. 2.46. The user may choose from eleven test cases;
the first ten are from [15]. The test cases 1–10 are in order of increasing difficulty and are solvable with the
goal state in Fig. 2.45. The eleventh test case is solvable for the alternative goal state.

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

bdf 0.0 0.2 0.5 2.3 3.6 2.9 17.7 144.4 - -
CPU Seconds bf 0.3 0.5 3.0 43.6 99.6 1523 - - - -

id 0.3 0.4 1.2 5.2 8.2 34.2 40.8 556.0 - -

Table 2.1: CPU Times (in Seconds) for the Eight Puzzle with Blind Search

A summary of the results obtained on a 300 MHz PC is shown in Table 2.1: no entries are shown for
unsuccessful runs due to stack overflow or prohibitively long computing times; and, the value chosen for the
horizon in Bounded Depth First search is the minimum number of moves needed to reach the goal state (row
two in Table 2.1).18

Implementation Details

The system’s states are internally represented by the term state/9 ; for example, the initial tile arrangement
in Fig. 2.45 will be represented by state(3,4,5,8,0,2,7,1,6). (The zero stands for ‘no tile’.) The link/2

predicate is defined in eight links.pl by focusing on the movement of the position with no tile; for example,
two of the four states linked to the initial state in Fig. 2.45 are generated by means of the following clauses of
link/2 ,

link(InState,OutState) :- down(InState,OutState).

link(InState,OutState) :- left(InState,OutState).

The pertinent clauses of down/2 and left/2 are respectively defined by

18This will be found by Breadth First or Iterative Deepening as these algorithms find a shortest route to the goal node. In cases
where both these algorithms fail, the minimum number of moves to the goal state has been established by an appropriate informed
search algorithm from Chap. 3.

Download free ebooks at bookboon.com

Applications of Prolog

101

Blind Search

�

�

�

�

?- consult(eight puzzle).
% blindsearches compiled into blindsearches 0.00 sec, 7,408 bytes

% eight links compiled into links 0.00 sec, 4,152 bytes
% eight puzzle compiled 0.05 sec, 19,576 bytes
Yes

?- tiles.
Start state for test case number 1:

8 1 2
7 3

6 4 5

...

Start state for test case number 6:
3 4 5
8 2

7 1 6

...

Select test case (a number between 1 and 11)... 6.
Select algorithm (df/df dl/bf/bf dl/bdf/id)... id.
% 2,299,419 inferences in 34.17 seconds (67294 Lips)

Solution in 16 steps.
Show result in full? (y/n) y.

3 4 5
8 2
7 1 6

3 4 5

8 1 2
7 6

3 4 5
8 1 2

7 6

...

1 3
8 2 4

7 6 5

1 2 3
8 4
7 6 5

Yes

Figure 2.46: Solving the Eight Puzzle

Download free ebooks at bookboon.com

Applications of Prolog

102

Blind Search

down(state(A,B,C,D,0,E,F,G,H),state(A,B,C,D,G,E,F,0,H)).

left(state(A,B,C,D,0,E,F,G,H),state(A,B,C,0,D,E,F,G,H)).

Exercise 2.22. Complete the definition of link/2 . �

All the other problem relevant predicates are defined in the top module in eight puzzle.pl which imports
predicates from both eight links.pl and blindsearches.pl.

Tail Recursion

If the last goal in the body of a recursive clause is the head, it is termed tail recursive. If all recursive clauses of
a predicate are tail recursive, and a cut (!) precedes the last goal in each, the Prolog compiler will not retain
reference to the earlier goals and the implementation will not crash due to stack overflow, and, it will run faster.
Some compilers will recognize tail recursion automatically without the additional cut(s). It is good practice to
use the cut for tail recursive code whatever system one uses.

The entries of Table 2.1 have been obtained by tail recursive versions using cuts. This is an important
addition here as some test cases proved unsolvable without the additional cut.

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

103

Informed Search

Chapter 3

Informed Search

In this chapter we are going to discuss graph search algorithms and applications thereof for finding a minimum
cost path from a start node to the goal node.

3.1 The Network Search Problem with Costs

The network search problem in Sect. 2.2 (Fig. 2.1) was devoid of any cost information. Let us now assume that
the costs to traverse the edges of the graph in Fig. 2.1 are as indicated in Fig. 3.1.

There are two possible interpretations of the figures in Fig. 3.1: they can be thought of as costs of edge
traversal or, alternatively, as edge lengths. (We prefer the latter interpretation in which case, of course, Fig. 3.1
is not to scale.) The task is to determine a minimum length path connecting s and g, or, more generally,
minimum length paths connecting any two nodes.

The algorithms considered in this chapter assume the knowledge of an heuristic distance measure, H , between
nodes. Values of H for the network in Fig. 3.1 are shown in Table 3.1. They are taken to be the estimated
straight line distances between nodes and may be obtained by drawing the network in Fig. 3.1 to scale and
taking measurements.

Three algorithms will be introduced here: the A–Algorithm, Iterative Deepening A∗ and Iterative Deepen-
ing A∗–ε.

�
�
�
�

�
�
�
�

���

� � �
��
cba

d e f

gs

35 37

52 43

55 54

62

85

28

Figure 3.1: A Network with Costs

Download free ebooks at bookboon.com

Applications of Prolog

104

Informed Search

85 40 30 62 34 31 14 s
98 51 25 76 45 28 g

109 71 54 73 37 f
77 54 63 35 e
55 61 88 d
95 43 c
52 b
a

Table 3.1: Straight Line Distances between Nodes in Fig. 3.1

3.1.1 Cost Measures

An estimated overall cost measure, calculated by the heuristic evaluation function F , will be attached to every
path; it is represented as

F = G + H (3.1)

where G is the actual cost incurred thus far by travelling from the start node to the current node and H , the

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

105

Informed Search

heuristic, is the estimated cost of getting from the current node to the goal node. Assume, for example, that
in the network shown in Fig. 3.1 we start in d and want to end up in c. Equation (3.1) then reads for the path
d → s → a (with obvious notation) as follows

F (d → s → a, c) = G(d → s → a) + H(a, c)

= (62 + 85) + 95 = 147 + 95 = 242 (3.2)

3.1.2 The A–Algorithm

We know from Chap. 2 that for blind search algorithms the updating of the agenda is crucial: Breadth First
comes about by appending the list of extended paths to the list of open paths; Depth First requires these lists
to be concatenated the other way round.

For the A–Algorithm, the updating of the agenda is equally important. The new agenda is obtained from
the old one in the steps 1© and 2© below.

1© Extend the head of the old agenda to get a list of successor paths. An intermediate, ‘working’ list will be
formed by appending the tail of the old agenda to this list.

2© The new agenda is obtained by sorting the paths in the working list from 1© in ascending order of their
F–values.

3© The steps 1© and 2© are iterated until the path at the head of the agenda leads to the goal node.

In the example shown in Fig. 3.2, the paths are prefixed by their respective F–values and postfixed by their
respective G–values. Using this notation and the cost information, the example path in (3.2) is now denoted
by 242 − [a, s, d] − 147. Notice that this path also features in Fig. 3.2.

It can be shown (e.g. [23]) that if the heuristic H is admissible, i.e. it never overestimates the actual
minimum distance travelled between two nodes, the A–Algorithm will deliver a minimum cost path if such a
path exists.1In this case the A–Algorithm is referred to as an A∗–Algorithm and is termed admissible. (As the
straight line distance is a minimum, the heuristic defined by Table 3.1 is admissible.)

Implementation

The predicate a search(+Start,+Goal,-PathFound) in asearches.pl implements the A–Algorithm. A few
salient features of a search/3 will be discussed only; for details, the reader is referred to the source code which
broadly follows the pattern of implementation of the blind search algorithms (Fig. 2.15, p. 65 and Fig. 2.20,
p. 69).

The implementation of the A–Algorithm in asearches.pl uses the built-in predicate keysort/2 to imple-
ment step 2© (see inset on p. 108).

The module invoking a search/3 should have defined (or imported) the following predicates.

• The connectivity predicate link/2 . For the network search problem, this is imported from links.pl

(Fig. 2.2, p. 49).

• The estimated cost defined by e cost/3 . For the network search problem, this is defined in graph a.pl

by

1To be more precise, this holds only under some additional conditions which are satisfied, however, in most practical applications
[23].

Download free ebooks at bookboon.com

Applications of Prolog

106

Informed Search

e_cost(Node,Goal,D) :- dist(Node,Goal,D).

e_cost(Node,Goal,D) :- dist(Goal,Node,D).

with dist/3 essentially implementing Table 3.1,

dist(s,a,85). ... dist(s,f,31). dist(s,g,14).

dist(g,a,98). ... dist(g,f,28).

...

dist(b,a,52).

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

107

Informed Search

[88-[d]-0]
1©

�� [98-[e,d]-35, 92-[s,d]-62, 150-[a,d]-55]
2©

��

[92-[s,d]-62, 98-[e,d]-35, 150-[a,d]-55]
1©

�� [242-[a,s,d]-147, 98-[e,d]-35, 150-[a,d]-55]
2©

��

[98-[e,d]-35, 150-[a,d]-55, 242-[a,s,d]-147]
1©

�� [126-[f,e,d]-72, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[126-[f,e,d]-72, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[125-[g,f,e,d]-100, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[125-[g,f,e,d]-100, 132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[132-[b,e,d]-89, 150-[a,d]-55, 242-[a,s,d]-147]
1©

��

[132-[c,b,e,d]-132, 236-[a,b,e,d]-141, 150-[a,d]-55, 242-[a,s,d]-147]
2©

��

[132-[c,b,e,d]-132, 150-[a,d]-55, 236-[a,b,e,d]-141, 242-[a,s,d]-147]
3©

�� success

Figure 3.2: Hand Computations: The Evolution of the Agenda for the A–Algorithm (from d to c in Fig 3.1)

Download free ebooks at bookboon.com

Applications of Prolog

108

Informed Search

• The actual edge costs defined by edge cost/3 . For the network search problem, this is defined in
graph a.pl by

edge_cost(Node1,Node2,Cost) :- link(Node1,Node2),

e_cost(Node1,Node2,Cost).

Built-in Predicate: keysort(+List,-Sorted)

Unifies Sorted with the sorted version of List . The entries in List have to be
in the form key-term and they will be sorted in ascending order of the value
of key .
Example: Sort a list of names with ages according to increasing values of age.
(Facts for age/2 to be entered manually.)

?- consult(user).

|: age(adam,34).

|: age(tracy,18).

|: age(george,15).

|:
�� ��Ctrl +
�� ��D

% user compiled 0.00 sec, 480 bytes

Yes

?- bagof(Age- Name,age(Name, Age),L), keysort(L,Sorted).

L = [34-adam, 18-tracy, 15-george]

Sorted = [15-george, 18-tracy, 34-adam]

Yes

The interactive session below shows that the path d → e → b → c is a shortest one from d to c.

?- consult(graph a).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% links compiled into edges 0.00 sec, 1,804 bytes

% graph a compiled 0.00 sec, 16,584 bytes

?- a search(d,c,PathFound), total cost(PathFound,Cost).

PathFound = [d, e, b, c]

Cost = 132

3.1.3 Iterative Deepening A∗ and its ε–Admissible Version

Application of the A–Algorithm to a more substantial example in Sect. 3.2 will reveal that the A–Algorithm
may fail due to excessive memory requirements.2 Clearly, there is scope for improvement.

In the mid 1980s, a new algorithm was conceived by Korf [20] combining the idea of Iterative Deepening
(Sect. 2.6) with a heuristic evaluation function; the resulting algorithm is known as Iterative Deepening A∗

(IDA∗).3 The underlying idea is as follows.

• Use Depth First as the ‘core’ of the algorithm.

2We can see at this stage already that there is a special case of the A–Algorithm where lots of memory is required: the
A–Algorithm specializes to Breadth First if unit edge costs and the zero heuristic are assumed.

3Noteworthy is also a more recent work by Korf [21] analysing IDA∗.

Download free ebooks at bookboon.com

Applications of Prolog

109

Informed Search

• Convert the core into a kind of Bounded Depth First Search with the bound (the horizon) now not being
imposed on the length of the paths but on their F -values.

• Finally, imbed this ‘modified’ Bounded Depth First Search into a framework which repeatedly invokes it
with a sequence of increasing bounds. The corresponding sequence of bounds in Iterative Deepening was
defined as a sequence of multiples of some constant increment; a unit increment in the model implemen-
tation. The approach here is more sophisticated. Now, in any given phase of the iteration, the next value
of the bound is obtained as the minimum of the F -values of all those paths which had to be ignored in
the present phase. This approach ensures that in the new iteration cycle the least number of paths is
extended.

The pseudocode of IDA∗ won’t be given here; it should be possible to reconstruct it from the above informal
description. It can be shown that IDA∗ is admissible under the same assumptions as A∗.

The so-called ε–admissible version of IDA∗ (IDA∗–ε) is a generalization of IDA∗. It is obtained by extending
the F -horizon to

ε + the minimum of all F -values of paths ignored

with some fixed ε ≥ 0. (It clearly specializes to IDA∗ for ε = 0.) This algorithm may ‘catch’ a solution which
otherwise would fall just outside the current F -horizon. IDA∗–ε may therefore find suboptimal solutions with

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

110

Informed Search

�

�

�

�

?- consult(graph a).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% links compiled into edges 0.00 sec, 1,804 bytes

% graph a compiled 0.00 sec, 16,584 bytes

Yes

?- path.

Select start node s, a, b, ..., f, g: d.

Select goal node s, a, b, ..., f, g: c.

Select algorithm (a/ida/idaeps)... a.

% 586 inferences in 0.00 seconds (Infinite Lips)

Solution in 3 steps.

d -> e -> b -> c

Total cost: 132

Yes

Figure 3.3: An Interactive Session. (See Exercise 3.1.)

Node 1 2 3 4 5 6 7 8 9 10
Co-ordinates (1, 4) (2, 7) (2, 9) (3, 4) (3, 5) (3, 9) (4, 1) (4, 5) (4, 9) (5, 4)

Table 3.2: Node Co-ordinates in the Network in Fig. 3.4

broadly the same effort and memory as IDA∗.4

Both versions, IDA∗ and IDA∗–ε, are implemented in asearches.pl.
Exercise 3.1. Complete the definition of graph a.pl to solve the network search problem in Fig. 3.1 as

illustrated by the interactive session in Fig. 3.3. (The user should be able to run any of the three algorithms
discussed here.) �

Exercise 3.2. Fig. 3.4 shows a small directed network with the nodes’ co-ordinates shown in Table 3.2. Let
the length of an edge be the city block (or Manhattan) distance of its endpoints.5

(a) Find the shortest route from node 1 to node 10 manually by using the A–Algorithm with the straight
line heuristic.

(b) Write a module (graph b.pl, say), which uses asearches.pl, for finding the shortest route as before but
now the user should be able to select the algorithm in the style shown in Fig. 3.3.

�

Exercise 3.3. (Adjacency matrix) To represent the network in Fig. 3.4, you will have directly defined the
connectivity predicate link/2 by a collection of facts.6 A more flexible and elegant alternative to record the
connectivity of a network is by using an adjacency matrix . The entries of this are zero everywhere except for

4IDA∗–ε may not return an optimal solution. An example for this will be seen in Sect. 3.2.
5The city block distance between two points is the shortest distance when measured in a zigzag parallel to the co-ordinate axes.

Thus, for example, the nodes 6 and 8 are |3− 4|+ |9− 5| = 5 units apart.
6In all likelihood the same goes for the predicate that you will have used to record the nodes’ co-ordinates from Table 3.2.

Download free ebooks at bookboon.com

Applications of Prolog

111

Informed Search

1 �
�
�

�
�
�!

2 �
�
�

�
�
�!

"
"
"
"
"
"
"
""#

3

�
�
�

�
�
�!

$
$
$
$
$
$
$
$$%

4 �

5 �
�
�
�
�
�
�&

6

��
�
�
�
�
�'

7

�
�
�
�
�
�&8 �

9

�
�
�
�
�
�'

10

Figure 3.4: A Directed Network. (See Exercise 3.2.)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.5: Adjacency matrix of the network in Fig. 3.4

positions (i, j) where there is a directed edge from node i to node j; these entries are unity. Fig. 3.5 shows the
adjacency matrix for the network in Fig. 3.4. Let this be defined by a Prolog fact such as

adj(1,[[0,1,1,0,0,0,0,0,0,0],

[0,0,0,1,1,1,0,0,0,0],

.

[0,0,0,0,0,0,0,0,0,0]]).

(3.3)

Let us also assume that the co-ordinates of the nodes from Table 3.2 are implemented by the Prolog fact

co_ord(1,[(1,4),(2,7),(2,9),(3,4),(3,5),(3,9),(4,1),(4,5),(4,9),(5,4)]).

(a) Define a predicate make links(+A) which will write to the database the facts for link/2 corresponding to
the adjacency matrix A . Also define a predicate make co ordinates(+C) which takes a list of co-ordinates
(list of pairs) C and writes to the database the corresponding facts in the form in(Node,X co ord,Y co ord) .
(Remove old definitions from the database before writing to it.)

(b) Now, after revising your solution of Exercise 3.2, it should be possible to search the network in Fig. 3.4
thus

Download free ebooks at bookboon.com

Applications of Prolog

112

Informed Search

?- adj(1, A), co ord(1, Co), path(A, Co).

Select start node 1, ..., 10: 1.

Select goal node 1, ..., 10: 10.

Select algorithm (a/ida/idaeps)... a.

% 561 inferences in 0.00 seconds (Infinite Lips)

Solution in 4 steps.

1 -> 2 -> 5 -> 8 -> 10

Total cost: 10

Yes

Notice in particular that the predicate path(+A,+Co) should initiate the search for the network with ad-
jacency matrix A and list of node co-ordinates Co . Make use of make links/1 and make co ordinates/1

from part (a) when defining path/2 . Your implementation will be able to cope with any directed network
specified in this manner. (Minor point: Display the correct number of nodes for the user to choose from.)

(c) Use your implementation to determine the shortest path from node 1 to node 26 in the network in Fig. 3.6,
p. 113. The node co-ordinates are given in Table 3.3, and, as before, the edge lengths should be calculated

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

113

Informed Search

1 �
�
�
�
�
�'

�
�
�
�
�
�
�&

2

�
�
�!

"
"
"
"
"
"
"
""#

3�
�
�

�
�
�!

4
�
�
�

$
$
$
$
$
$
$
$$%
5 �
�
�
�
�
�
�&

6

��
�
�
�
�
�'
7 �
�
�
�
�
�
�&

8

��
�
�
�
�
�'
9�
�
�

�
�
�!

"
"
"
"
"
"
"
""#

10�
�
�!

�
�
�

$
$
$
$
$
$
$
$$%
11

�
�
�!

"
"
"
"
"
"
"
""#

12�
�
�

�
�
�!

13

�
�
�

$
$
$
$
$
$
$
$$%
14 �
�
�
�
�
�
�&

15

��
�
�
�
�
�'
16�
�
�

�
�
�!

"
"
"
"
"
"
"
""#

17�
�
�!

�
�
�

$
$
$
$
$
$
$
$$%
18 �
�
�
�
�
�
�&

(
(
(
(
(
(
(
(
(
(
(()

19 ��
�
�
�
�
�'

�
�
�
�
�
�&

20

��
�
�
�
�
�'

*
*
*
*
*
*
*
*
*
*
**+
21

�
�
�!

"
"
"
"
"
"
"
""#

22�
�
�

�
�
�!

23

�
�
�

$
$
$
$
$
$
$
$$%
24

�
�
�!

25

�
�
�

26

Figure 3.6: Network for Exercise 3.3, Part (c)

Node 1 2 3 4 5 6 7 8 9
Co-ordinates (1, 2) (2, 7) (2, 14) (2, 20) (3, 2) (3, 17) (4, 5) (4, 8) (5, 2)

Node 10 11 12 13 14 15 16 17 18
Co-ordinates (5, 20) (6, 13) (6, 17) (6, 19) (7, 2) (7, 15) (8, 7) (8, 19) (9, 4)

Node 19 20 21 22 23 24 25 26
Co-ordinates (9, 8) (9, 18) (10, 3) (10, 16) (10, 19) (11, 3) (11, 12) (12, 5)

Table 3.3: Node Co-ordinates in the Network in Fig. 3.6

by the city block distance.7

(The model solution for this exercise is in graph c.pl.) �

Exercise 3.4. (Sparsity) If the adjacency matrix of a network is sparse, i.e. most of its entries are zero
(Fig. 3.5), it is a good idea to apply a compression scheme for storing it in the database. The following is a
simple compression scheme. As each row can be thought of as a concatenation of lists comprising zeros and
ones, we shall denote repetitions of the same character C by N-C where N is the number of times the character
C appears. Thus, for example, [1-0, 2-1, 7-0] will stand for the first row of the matrix in (3.3). Define a
predicate decompress(+C,-A) for converting a compressed matrix C into the corresponding adjacency matrix
A .8

Hint. A concise definition may be achieved by adopting the functional programming style:

1. Define a predicate for converting terms of the form N-C to a list comprising N copies of C .

2. Define now a predicate by mapping the predicate in (1) followed by applying flatten/2 .

7We shall meet this network in a different context in Sect. 3.4 as the search graph of the maze problem in Fig. 3.10, p. 122.
8The query in Exercise 3.3, part (b), may then equivalently be issued by

?- c adj(1, C), decompress(C, A), co ord(1, Co), path(A, Co).

if c adj/2 is used in an obvious manner for defining compressed adjacency matrices.

Download free ebooks at bookboon.com

Applications of Prolog

114

Informed Search

3 . . . 4 . . . 5

. 8 2

. 7 . . . 1 . . . 6

. 3 2

. . . . 4 . . . 5

. 1 . . . 6 .

. . 3 2

. 4 1 . .

. 5

1 . .

. . .

. . .

MH = 2 + 2 + 2 + 0 + 2 + 0 + 3 + 1 = 12

Figure 3.7: Calculating the Manhattan Distance between the tile arrangements in Fig. 2.45

3. Finally, implement decompression by mapping the predicate in (2) to the compressed matrix.

(The solution is in graph c.pl.) �

3.2 Case Study: The Eight Puzzle Revisited

For some choices of the terminal states for the Eight Puzzle we have not been able to find a solution using blind
search (Table 2.1, p. 100). We are going to re-examine this puzzle here by informed search.

3.2.1 The Heuristics

A popular heuristic for the Eight Puzzle is the Manhattan Distance (MH). For two tile arrangements, the
MH is the minimum total number moves all eight tiles need to be moved individually from their initial to
their respective final positions. Whereas in the original version of the puzzle prior to moving a tile we had to
make space by moving tiles which were ‘in the way’, now in this relaxed problem the obstacle tiles are simply
ignored. (As before, moves sideways and up and down are allowed only.) For example, the MH between the
tile arrangements in Fig. 2.45, p. 99, is 12 as shown in Fig. 3.7. The MH never exceeds the actual distance (i.e.
the minimum number of moves needed to convey one configuration to the other) which is 16 here (Fig. 2.46,
p. 101). The MH is therefore an admissible heuristic.

The predicate e cost(mh,+State1,+State2,-C)9 returns the estimated cost between State1 and State2
as measured by the MH; for the states in Fig. 2.45 we have, for example,

?- e cost(mh,state(3,4,5,8,0,2,7,1,6),state(1,2,3,8,0,4,7,6,5),C).

C = 12

9In the first argument we indicate the heuristic employed. (In Exercise 3.5 we will be considering another heuristic too.)

Download free ebooks at bookboon.com

Applications of Prolog

115

Informed Search

To implement this predicate, we first represent the system’s states in matrix form, i.e. by a list comprising
three lists.

matrix_form(state(T11,T12,T13,T21,T22,T23,T31,T32,T33),

[[T11,T12,T13],[T21,T22,T23],[T31,T32,T33]]).

Given now two matrix representations, Matrix1 and Matrix2 , we find the number of steps D needed to convey
the tile located at (i, j) in Matrix1 to its new position in Matrix2 by applying mh distance/5 , defined by

mh(I,J,Matrix1,Matrix2,D) :- ijth(I,J,Matrix1,E),

((E \= 0,

ijth(K,L,Matrix2,E),

D is abs(I - K) + abs(J - L));

D = 0), !.10

For example, the number of steps in the seventh sequence of tile moves in Fig. 3.7 is verified by

?- mh(3,2,[[3,4,5],[8,0,2],[7,1,6]],[[1,2,3],[8,0,4],[7,6,5]],D).

D = 3

Finally, as seen in Fig. 3.7, the MH between any two tile arrangements (in matrix notation) is the sum of the
number of moves for each individual tile.

mh(Matrix1,Matrix2,D) :- mh(1,1,Matrix1,Matrix2,D11),

...

mh(3,3,Matrix1,Matrix2,D33),

D is D11 + D12 + ... + D33.

Exercise 3.5. Another heuristic for the eight puzzle is the number of misplaced tiles (MP): each tile already
in the right position will contribute zero whereas each of the other tiles will contribute unity. Implement this
heuristic by e cost(mp,+State1,+State2,-C) . Example:

?- e cost(mp,state(3,4,5,8,0,2,7,1,6),state(1,2,3,8,0,4,7,6,5),C).

C = 6

Thus, this heuristic does not exceed the MH11 which itself is admissible. Hence MP is admissible. (MP is
defined in eight puzzle a.pl.) �

3.2.2 Prolog Implementation

The Prolog implementation is in the file eight puzzle a.pl. A sample run is shown in Fig. 3.8, p. 116. For
example, case 9 is now solvable while previously it was not viable (Table 2.1, p. 100). Table 3.4 shows the
CPU times for the heuristic searches using a 300 MHz machine. (Unsuccessful cases and those with excessive
computing times have been omitted.) Comparing Table 3.4 with Table 2.1 shows the dramatic benefit of using

10The predicate ijth(?I,?J,+Matrix,?Entry) is defined here by

ijth(I,J,ListOfRows,E) :- nth1(I,ListOfRows,Row), nth1(J,Row,E).

It is used in two modes. First, to get access to the (i, j)th entry of a matrix, use the mode ijth(+I,+J,+Matrix,-Entry) . Then,
to identify the position of Entry in Matrix , use ijth/4 in the mode ijth(-I,-J,+Matrix,+Entry) .

11In fact, MP is at most the number of tiles, i.e. 8. Since MH is 12 here, we know without checking further that MP is less than
MH.

Download free ebooks at bookboon.com

Applications of Prolog

116

Informed Search

�

�

�

�

?- consult(eight puzzle a).

% asearches compiled into a ida idaeps 0.00 sec, 7,704 bytes

% eight links compiled into links 0.00 sec, 4,100 bytes

% eight puzzle a compiled 0.00 sec, 22,288 bytes

Yes

?- tiles.

Start state for test case number 1:

8 1 2

7 3

6 4 5

...

Start state for test case number 9:

5 6 7

4 8

3 2 1

...

Select test case (a number between 1 and 10)... 9.

Select heuristic (mh/mp)... mh.

Select algorithm (a/ida/idaeps)... a.

Solution in 30 steps.

Show result in full? (y/n) y.

5 6 7

4 8

3 2 1

5 6 7

4 2 8

3 1

...

1 3

8 2 4

7 6 5

1 2 3

8 4

7 6 5

Yes

Figure 3.8: Solving the Eight Puzzle by Heuristic Search

Download free ebooks at bookboon.com

Applications of Prolog

117

Informed Search

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

mp
a 0.1 0.1 0.0 0.3 0.7 26.8 14.3 - - -

CPU ida 0.1 0.1 0.1 0.5 1.0 4.2 5.1 59.9 - -
Seconds

mh
a 0.0 0.0 0.1 0.1 0.1 0.9 0.7 38.0 42.0 -

ida 0.1 0.1 0.0 0.1 0.1 0.3 0.8 8.1 2.8 52.9

Table 3.4: CPU Times (in Seconds) for the Eight Puzzle with Heuristic Search

heuristic search. It confirms furthermore that MH is better than MP and that IDA∗ is preferable to the
A∗–Algorithm.

Case 9 becomes viable for the number of misplaced tiles heuristic for IDA∗–ε. With ε = 25, we get a solution
in 32 steps in 30.4 CPU seconds.

Exercise 3.6. (Other Algorithms) As precursors to the A–Algorithm, in many AI books two other algo-
rithms are also discussed: Hill Climbing and Best First Search (e.g. [34]).

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

118

Informed Search

Hill Climbing is a modification of Depth First in that the nodes obtained by expanding a parent node will be,
prior to them being put to the front of the agenda, sorted in ascending order of their estimated distances to the
goal node.12

Best First is an extension of the previous idea in that now, prior to choosing the node to be expanded next,
all open paths in the agenda are sorted in ascending order of their estimated distances to the goal node.13

You should implement these two algorithms.
Notes.

(a) Model your implementation of the search algorithms on asearches.pl. As in asearches.pl, represent
the estimated cost of a path by a prefix; no postfix is needed now.

(b) Model your solution of the Eight Puzzle on eight puzzle a.pl.

(c) Run the implementation and interpret the results.

(The model solution will be found in bsearches.pl and eight puzzle b.pl.) �

3.3 Project: Robot Navigation14

Develop a Prolog program that can be used to guide a robot in the matrix shown in Fig. 3.9 along a shortest
route from any cell to any other cell.15 The robot should be able to move parallel to the walls but not diagonally.
Notes.

1. Use the search algorithms’ implementations in asearches.pl.

2. Use the city block distance as a heuristic H .

3. There are several possibilities to model the ’cost’ of a path. The simplest is to take its length as a measure
of cost, i.e.

G = path length (3.4)

The length is the sum of the edge costs each of which is in our application unity; we therefore declare

edge_cost(_,_,1).

Using this measure, the cost of the path found in Fig. 3.9 is 14.

4. Experiments using the cost measure in (3.4) suggest that the problem cannot always be solved by the
A–Algorithm as the agenda may become excessively large. This will happen if there are too many paths
of the same length sharing the same endpoints. The cost defined by

G = path length + δ × path tortuosity (3.5)

12The underlying intuitive expectation is here that expanding nodes that are deemed closer to the goal node will lead faster to
the goal node.

13Best First is therefore a kind of A–Algorithm with the G component in (3.1) set to zero.
14A simplified version of the problem described in this section served as a coursework problem in the late Prof. Imad Torsun’s

Prolog lectures in the late 1990s.
15The matrix layout (robot floorplan on Fig. 3.9) is taken from [23, p. 83].

Download free ebooks at bookboon.com

Applications of Prolog

119

Informed Search

�

�

�

�

?- consult(robot).

% rsearches compiled into rsearches 0.00 sec, 7,924 bytes
% floorplan compiled into floorplan 0.05 sec, 9,524 bytes

% robot compiled 0.05 sec, 25,116 bytes
Yes
?- robot.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
.

+---+---+---+---+---+---+---+---+---+---+---+
1 | | | | | | | | | | | | . . . 1

+---+---+---+---+---+---+---+---+---+---+---+
2 | | | | | | | | | | | | . . . 2

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | | | | | | | | | . . . 3

+---+---+---+---+---+---+---+---+---+---+---+
4 | | | | | | | | | | | | . . . 4

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
5 | | |XXX|XXX|XXX|XXX|XXX|XXX| | | | | | | 5

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
6 | | |XXX|XXX| | |XXX|XXX| | | | | | | 6

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
7 | | |XXX|XXX| | |XXX|XXX| | | | | | | 7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
8 | | | | | | | | | | | | . . . 8

+---+---+---+---+---+---+---+---+---+---+---+
9 | | | | | | | | | | | | . . . 9

+---+---+---+---+---+---+---+---+---+---+---+
10 | | | | | | . . . | | | | . . . 10

+---+---+---+---+---+ +---+---+---+
11 | | | | | | . . . | | | | . . . 11

+---+---+---+---+---+ +---+---+---+
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Select start cell ... cell(5,11).
Select goal cell ... cell(7,3).

Select algorithm (a/ida/idaeps)... a.

% 842,633 inferences in 5.66 seconds (148875 Lips)

From cell(5, 11) to cell(7, 3) in 14 moves:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
.

+---+---+---+---+---+---+---+---+---+---+---+
1 | | | | | | | | | | | | . . . 1

+---+---+---+---+---+---+---+---+---+---+---+
2 | | | | | | | | | | | | . . . 2

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | | | | * * * * * | | | . . . 3

+---+---+---+---+---+---+---+---+-*-+---+---+
4 | | | | | | | | | * | | | . . . 4

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
5 | | |XXX|XXX|XXX|XXX|XXX|XXX| * | | | | | | 5

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
6 | | |XXX|XXX| | |XXX|XXX| * | | | | | | 6

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
7 | | |XXX|XXX| | |XXX|XXX| * | | | | | | 7

+---+---+---+---+---+---+---+---+-*-+---+---+---+---+---+
8 | | | | | * * * * * * * * * | | | . . . 8

+---+---+---+---+-*-+---+---+---+---+---+---+
9 | | | | | * | | | | | | | . . . 9

+---+---+---+---+-*-+---+---+---+---+---+---+
10 | | | | | * | . . . | | | | . . . 10

+---+---+---+---+-*-+ +---+---+---+
11 | | | | | * | . . . | | | | . . . 11

+---+---+---+---+---+ +---+---+---+
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Yes

Figure 3.9: Robot Navigation

Download free ebooks at bookboon.com

Applications of Prolog

120

Informed Search

where
path tortuosity = number of turns

will differentiate between such paths sufficiently enough for excessive growth of the agenda to be avoided.
To guarantee that all least cost paths are also shortest paths, choose δ > 0 small enough such that a
shorter path, however tortuous, will always be assigned a smaller cost. Assuming that no path will have
more than, say, nine turns, δ = 0.1 will do. Using this measure, the cost of the path found in Fig. 3.9 is
14.3.16

5. Your implementation using (3.4) will always succeed if Iterative Deepening A∗ is used but may run out
of memory for the A–Algorithm.

6. A more ambitious implementation will use (3.5), and this will always succeed, also for the A–Algorithm.
The implementations in asearches.pl can cope with the usual cost structure only, i.e. where each edge
is assigned a fixed cost. To cater for the more complex cost structure in (3.5), you should devise a
modified version of asearches.pl. (The model solution uses rsearches.pl that is an adaptation of
asearches.pl.)

7. The predicate defining the floor layout, called cell/2 in the model implementation, may be defined by
facts as follows.

cell(1,1). cell(1,2). ... cell(11,11).

It would be rather tedious, however, to enter these facts into the database manually and therefore they
are assert ed ([9, p. 80]) by invoking a rule-based equivalent, position/2 , prior to running the main
body of the program. For example, the upper block of cell positions may be defined by

position(X,Y) :- between(1,11,X), between(1,4,Y).

which then is followed by the assert ion of the facts defining cell/2 by layout/0 as shown below.

layout :- retractall(cell(,)),

position(X,Y),

assert(cell(X,Y)),

fail.

9>>=
>>;

failure driven loop ([9, p. 77])

layout.
¯

catch-all clause

This is a simple form of memoization (e.g. [19], p. 179 and [28], p. 181), aimed at saving computing
time during the search process. In addition, it introduces some flexibility, as the suggested arrangement
allows the floor layout to be easily modified if required.

8. The top level module of the model implementation is in robot.pl. It uses the modules in rsearches.pl

(or asearches.pl, depending on which cost measure is being employed) and floorplan.pl. The latter
implements the path’s display on the terminal as shown in Fig. 3.9. (A less ambitious solution will display
the path by showing its co-ordinates only.)

16By contrast, the path from cell(5,11) to cell(7,3) and having turns at cell(5,8), cell(9,8), cell(9,4) and cell(7,4) has
the same length as the one found in Fig. 3.9 but it is more tortuous as it changes directions four times rather than thrice. It will
be assigned the cost of 14.4.

Download free ebooks at bookboon.com

Applications of Prolog

121

Informed Search

3.4 Project: The Shortest Route in a Maze

Develop a Prolog program for searching for a shortest path in a maze of a specific kind with the following
features.

• The program should search in mazes exemplified in Fig. 3.10 whereby

– The gates are arranged in groups parallel to each other;

– Adjacent groups of gates are a unit distance apart;

– Groups of gates are numbered 1, 2, . . . (up to 12 in Fig. 3.10);

– Group number 1 comprises the IN gate only;

– The group with the highest number (here: 12) comprises the OUT gate only;

– Gates are of unit width;

– The position of the gates relative to the left wall is recorded by a number (1, . . . , 20 in Fig. 3.10) and
the overall width of the maze is determined by the position of the rightmost gate;

• The program should display on the terminal the maze and the shortest path found.

Furthermore, as seen in Fig. 3.10, the program should also have the following features.

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

122

Informed Search

�

�

�

�

?- consult(maze).

% maze_disp compiled into display 0.05 sec, 18,816 bytes
% asearches compiled into a_ida_idaeps 0.00 sec, 7,660 bytes
% maze compiled 0.11 sec, 41,972 bytes

Yes
?- maze.

Select test case (a number between 1 and 5)... 2.
Select heuristic (zero/ed/alt)... ed.
Select algorithm (a/ida/idaeps)... a.

% 77,949 inferences in 0.55 seconds (141725 Lips)

OUT 10 15 20
| | * | . . . |

12+---+---+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+12
| | * | . . . |
| * * * * * . . . |
| | * | . . | | . . |

11+---+---+ * +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+11
| | * | . . | | . . |
| * |
| | * | . . . | | | | . |

10+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+ +---+10
| | * | . . . | | | | . |
| * * * |
| | * | . | | . . | | . |
9+---+---+---+ * +---+---+---+ +---+---+---+---+---+---+---+---+---+ +---+---+ 9
| | * | . | | . . | | . |
| * * * * * * * . . . |
| . | * | . . | | . |
8+---+---+---+---+---+---+ * +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | * | . . | | . |
| . * * * * * * * * * * * * * * * * * . |
| | | . . | * | . |
7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ * +---+---+---+---+---+ 7
| | | . . | * | . |
| . . * * * * * . |
| . . | * | . | | | | . |
6+---+---+---+---+---+---+---+---+---+---+---+---+ * +---+---+---+ +---+ +---+ 6
| . . | * | . | | | | . |
| * . . |
| | * | . . . | . |
5+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | * | . . . | . |
| * * * * * * * . . . |
| | * | | | . . . |
4+---+---+---+---+ * +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | * | | | . . . |
| * * * * * * * . . . |
| | * | . . . | | . |
3+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | * | . . . | | . |
| * * * * * * * * * * * . . . |
| . | * | . | | . | . |
2+---+---+---+---+---+---+ * +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | * | . | | . | . |
| * * * * * * * * * * * . . . |
| | * | |
1+---+ * +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | * | |

IN 5 10 15 20

Length of shortest path is 54
Yes

Figure 3.10: Maze Search

Download free ebooks at bookboon.com

Applications of Prolog

123

Informed Search

�Y

�
X

�����������������������

| |
| . | | . . | | . |

8+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | | . . | | . |
| |
| | | . . | . | . |

7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ . +---+---+---+---+---+ 7
| | | . . | . | . |
| |
| . . | | . | | | | . |

6+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ +---+ +---+ 6
| . . | | . | | | | . |
| |
| | | . . . | . |

5+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | | . . . | . |
| |
| | . | | | . . . |

4+---+---+---+---+ . +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | . | | | . . . |
| |
| | | . . . | | . |

3+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | | . . . | | . |
| |
| . | | . | | . | . |

2+---+---+---+---+---+---+ +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | | . | | . | . |
| |
| | | |

1+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | | |

IN 5 10 15 20

Figure 3.11: Calculating the Euclidean Heuristic H1

• The user should choose between three evaluation functions (of the form F = G+H), whereby the heuristic
component, H , is one of the following: zero (zero), the Euclidean distance (ed), or, an alternative distance
(alt) which will be described in Sect. 3.4.1. (All three suggested choices of H will be seen admissible.)

• The user should choose between three algorithms: A∗, Iterative Deepening A∗ and Iterative Deepening A∗–
ε.

• The program should return a display of the shortest path found and its length.

3.4.1 Suggested Implementation Details

The predicate gates/2 will be used to specify the structure of a maze. For example,

gates(2,[[2], [7,14,20], [2,17], [5,8], [2,20], [13,17,19],

[2,15], [7,19], [4,8,18], [3,16,19], [3,12], [5]]).

specifies the maze shown in Fig. 3.10. The first argument of gates/2 stands for the ‘test case number’; its
second argument takes a list-of-lists defining the structure of the maze in an obvious manner.

Heuristics

The zero heuristic H0. Put simply H0 ≡ 0.
The Euclidean heuristic H1. This is the straight line (‘Euclidean’) distance e between any two gates. Fig. 3.11

illustrates H1: to estimate the distance between two gates X and Y , simply use Pythagoras (3.6).

H1(X, Y) = e(X, Y) =
√

(17 − 2)2 + (3 − 7)2 = 15.52 (3.6)

Download free ebooks at bookboon.com

Applications of Prolog

124

Informed Search

The alternative heuristic H2. If X and Y are in adjacent rows then put H2(X, Y) = e(X, Y). Assume now
that X and Y are at least two rows apart. H2(X, Y) is then defined with reference to Fig. 3.12. Take for each
row of gates between X and Y every gate in that row as an intermediate gate in a two-stage ‘flight’ between X
and Y . Keep the row fixed and compute the minimum of such ‘flight distances’ — each such minimum ‘flight
distance’ is obviously a lower bound on the true maze distance between X and Y . The alternative heuristic
H2(X, Y) is defined as the maximum of all such minimum flight distances, obtained by varying the in-between
rows of gates. Equations (3.7)-(3.8) illustrate the computation of H2.

H2(X, Y) = max { min { e(X, U1) + e(U1, Y),
e(X, U2) + e(U2, Y) } ,

min { e(X, V1) + e(V1, Y),
e(X, V2) + e(V2, Y) } ,

min { e(X, W1) + e(W1, Y),
e(X, W2) + e(W2, Y),
e(X, W3) + e(W3, Y) } }

(3.7)

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

125

Informed Search

�Y

�
X

�W1 �W2 �W3

�V1 �V2

�U1 �U2

| |
| . | | . . | | . |

8+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+ +---+ 8
| . | | . . | | . |
| |
| | | . . | . | . |

7+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ . +---+---+---+---+---+ 7
| | | . . | . | . |
| |
| . . | | . | | | | . |

6+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ +---+ +---+ 6
| . . | | . | | | | . |
| |
| | | . . . | . |

5+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ . + 5
| | | . . . | . |
| |
| | . | | | . . . |

4+---+---+---+---+ . +---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+ 4
| | . | | | . . . |
| |
| | | . . . | | . |

3+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+ 3
| | | . . . | | . |
| |
| . | | . | | . | . |

2+---+---+---+---+---+---+ +---+---+---+---+---+---+ +---+---+---+---+---+ . + 2
| . | | . | | . | . |
| |
| | | |

1+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 1
| | | |

IN 5 10 15 20

Figure 3.12: Calculating the Alternative Heuristic H2

H2(X, Y) = max { min { 16.28, 15.77 } ,
min { 17.13, 21.72 } ,
min { 16.05, 18.03, 20.62 } } = 17.13

(3.8)

The result is an admissible heuristic. Equations (3.6) and (3.7)-(3.8) show that H2 is not worse than the
Euclidean heuristic H1, i.e.

H1(X, Y) ≤ H2(X, Y) ≤ true distance between X and Y

H2 will be, however, more expensive to compute than either H0 or H1.

Manual Implementation

As a first step towards a full implementation, the problem shall be solved for the maze in Fig. 3.10 with the
zero heuristic H0 and without returning a pictorial display of the path found. In this initial phase we won’t be
making use of gates/2 directly. Instead, the necessary information about the maze will be represented by a
collection of facts defining edge cost/3 thus

edge_cost(state(1,2),state(2,7),6).

edge_cost(state(1,2),state(2,14),13).

...

(The filename chosen to hold these clauses, tedious.pl, reflects the effort involved.) The above definition of
edge cost/3 can be derived from the search graph indicated in Fig. 3.13 below. We define link/2 in terms of
edge cost/3 by

Download free ebooks at bookboon.com

Applications of Prolog

126

Informed Search

state(1,2)

state(2,7) state(2,14) state(2,20)

state(3,2) state(3,17)

state(4,5) state(4,8)

...
...

�

������,

------.

�
�
�!

�
�
�/

�
�
�!

�
�
�/��

� �

������,

------.

13 196

6 11 13 4 19 4

4 7 13 10

Figure 3.13: Search Graph for the Gates’ Position

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

127

Informed Search

link(Node1,Node2) :- edge_cost(Node1,Node2,_).

The positions of the terminal gates will be recorded in tedious.pl by

start_state(state(1,2)). final_state(state(12,5)).

Finally, the zero heuristic will be implemented by the definition

e_cost(_,_,0).

We are now in a position to find interactively the path shown in Fig. 3.10:

?- consult(tedious).

% asearches compiled into a ida idaeps 0.00 sec, 7,704 bytes

% tedious compiled 0.00 sec, 15,544 bytes

Yes

?- start state(S), final state(G), a search(S, G, PathFound), write term(PathFound,[]).

[state(1, 2), state(2, 7), state(3, 2), state(4, 5),

state(5, 2), state(6, 13), state(7, 15), state(8, 7),

state(9, 4), state(10, 3), state(11, 3), state(12, 5)]

Yes

Exercise 3.7. Complete the file tedious.pl and run the search for the maze in Fig. 3.10 by using the
heuristic H0. �

Full Implementation

The predicates which will be used by the search algorithms in asearches.pl should be defined in the top
module, maze.pl, say. Below you will find some guidelines for these and another predicate used to display the
result.

A rule-based version (in one clause) of link/2 will define the node connectivity; then, for example, for the
maze shown in Fig. 3.10 we get

?- consult(maze).

...

?- maze.17

Select test case (a number between 1 and 5)... 2.

Select heuristic (zero/ed/alt)... ed.

Select algorithm (a/ida/idaeps)... a.

...

?- link(state(3,17),Gate).

Gate = state(4, 5) ;

Gate = state(4, 8) ;

No

17This predicate, among other things, writes to the database the gates’ arrangement chosen by the user. The predicate gates/1

will be used to hold this information.

maze :- (retractall(gates());true),
select testcase(N),
assert((gates(AllGates) :- gates(N,AllGates))),
...

Now you should define link/2 for extracting the connectivity information from gates/1 .

Download free ebooks at bookboon.com

Applications of Prolog

128

Informed Search

The predicate e cost(+Heur,+G1,+G2,-Est) should return in Est the estimated distance of the gates G1
and G2 . Equations (3.6) and (3.7)-(3.8) are confirmed for example by

?- e cost(ed,state(3,17),state(7,2),Est).

Est = 15.5242

?- e cost(alt,state(3,17),state(7,2),Est).

Est = 17.1327

The pictorial display of the maze and the path found is accomplished by the predicate show picture(+Pic) ,
defined in the module maze disp.pl, with Pic specifying the maze and the path. To produce for example the
display in Fig. 3.10, Pic will be unified with the list of pairs

[(5, [5]), (3, [3,12]), (3, [3,16,19]), ..., (2, [2])]

(Pic allows to identify for each row the gate through which the path passes and the position of all the gates in
that row.)

Exercise 3.8. Complete the implementation of the maze search problem as described above. �

Exercise 3.9. The model implementation uses the straight line distance to derive heuristics. Modify the
implementation by basing the heuristics on the city block distance and observe and interpret changes in the
CPU time. �

Exercise 3.10. The idea of the alternative heuristic function H2 can be refined. For example, H3(X, Y)
may be defined for gates X and Y at least three rows apart by maximizing the minimum flight distances between
X and Y with two intermediate gates. Put H3(X, Y) = H2(X, Y) if X and Y are less than three rows apart.
Hn (n ≥ 4) may be defined in an analogous manner. Hn is a better heuristic than Hn−1, i.e. Hn ≥ Hn−1 but
it will be more expensive to compute. Experiment with these heuristics to find out whether the computational
benefit in the search process outwheighs the increased computing time for the heuristics themselves. �

Exercise 3.11. The search graph of the maze problem is acyclic, i.e. no node can be visited more than once
(e.g. Fig. 3.13). Path checking is therefore not required in this case. Disable path checking in asearches.pl

and confirm that the resulting implementation uses less CPU time. �

3.5 Project: Moving a Knight

Write a Prolog program which, given two positions on the chessboard, will find a shortest sequence of moves a
knight needs between these two positions.18 Your program will behave as indicated in Fig. 3.14. You should
experiment with the suggested heuristics to find out how long the search takes with each.

The model solution is in knight.pl and it uses asearches.pl.

18The present search problem originates from [10].

Download free ebooks at bookboon.com

Applications of Prolog

129

Informed Search

�

�

�

�

?- consult(knight).

% asearches compiled into a_ida_idaeps 0.00 sec, 7,704 bytes

% knight compiled 0.05 sec, 19,104 bytes

Yes

?- jumps.

Select heuristic (min/mh/ed/co)... ed.
Select algorithm (a/ida)... ida.
Select initial position of knight ([a-h][1-8])... a8.
Select final position of knight ([a-h][1-8])... h1.
cost limit/CPU time: 1/399.3
cost limit/CPU time: 4.42719/399.35
cost limit/CPU time: 4.49285/399.35
cost limit/CPU time: 4.52982/399.35
cost limit/CPU time: 4.60768/399.35
cost limit/CPU time: 4.61245/399.41
cost limit/CPU time: 4.63246/399.46
cost limit/CPU time: 4.84391/399.52
cost limit/CPU time: 4.89443/399.63
cost limit/CPU time: 5.2249/399.74
cost limit/CPU time: 5.23607/399.9
cost limit/CPU time: 5.26491/400.06
cost limit/CPU time: 5.40588/400.23
cost limit/CPU time: 5.40832/400.39
cost limit/CPU time: 5.41421/400.61
cost limit/CPU time: 5.44721/400.94
cost limit/CPU time: 5.72029/401.33
cost limit/CPU time: 5.78885/401.77
cost limit/CPU time: 5.84708/402.26
cost limit/CPU time: 5.86356/402.76
cost limit/CPU time: 5.89737/403.31
cost limit/CPU time: 6/403.91
% 474,024 inferences in 4.66 seconds (101722 Lips)
Solution in 6 steps:
a8 b6 a4 b2 d1 f2 h1

+---+---+---+---+---+---+---+---+
8 | X | | | | | | | |

+---+---+---+---+---+---+---+---+
7 | | | | | | | | |

+---+---+---+---+---+---+---+---+
6 | | X | | | | | | |

+---+---+---+---+---+---+---+---+
5 | | | | | | | | |

+---+---+---+---+---+---+---+---+
4 | X | | | | | | | |

+---+---+---+---+---+---+---+---+
3 | | | | | | | | |

+---+---+---+---+---+---+---+---+
2 | | X | | | | X | | |

+---+---+---+---+---+---+---+---+
1 | | | | X | | | | X |

+---+---+---+---+---+---+---+---+
a b c d e f g h

Yes

Figure 3.14: Sample Session: Moving a Knight

Download free ebooks at bookboon.com

Applications of Prolog

130

Informed Search

Suggested Heuristics

Let the letters annotating the board’s columns be replaced by 1, . . . , 8 and refer to the knight’s position by a
pair P = (x, y) with co-ordinates x, y ∈ {1, . . . , 8}. Define two heuristics H1 and H2 by

Hq(P, P ′) =

{
d1(P,P ′)

3 , when q = 1
d2(P,P ′)√

5
, when q = 2

(3.9)

where d1 and d2 denote respectively the city block distance (also called ‘Manhattan distance’) and the Euclidean
distance:

dq((x, y), (x′, y′)) =

{
|x − x′| + |y − y′|, when q = 1√

(x − x′)2 + (y − y′)2, when q = 2

H1 and H2 are referred to in Fig. 3.14 by mh and ed , respectively.

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

131

Informed Search

�
�
��0

�
�
��'

--
--1

����,
�
�
�
�&

�
�
�
�2

----.

��
��3

+---+---+---+---+---+---+---+---+
8 | | | | | | | | |

+---+---+---+---+---+---+---+---+
7 | | | | | | | | |

+---+---+---+---+---+---+---+---+
6 | | | | | | | | |

+---+---+---+---+---+---+---+---+
5 | | | | | | | | |

+---+---+---+---+---+---+---+---+
4 | | | | | | | | |

+---+---+---+---+---+---+---+---+
3 | | | | | | | | |

+---+---+---+---+---+---+---+---+
2 | | | | | | | | |

+---+---+---+---+---+---+---+---+
1 | | | | | | | | |

+---+---+---+---+---+---+---+---+
1 2 3 4 5 6 7 8

Figure 3.15: The Knight Moves One Step

An interesting property of these heuristics is that none dominates the other.19

Admissibility. We show that both H1 and H2 are admissible. For pairs of positions one step apart, it is

dq(P, P ′) =

{
3, when q = 1√

5, when q = 2

(This is illustrated in Fig. 3.15 for P = (4, 6).) In general, if the sequence of positions

P = P0, P1, . . . , Pn = P ′

takes the knight from P to P ′ in the minimum number of moves n, say, then, by the Triangle Inequality for dq

it is
dq(P, P ′) = dq(P0, Pn)

≤ dq(P0, P1) + . . . + dq(Pn−1, Pn) =

{
3n, when q = 1√

5n, when q = 2

(3.10)

From (3.10) we have by the definition of Hq in (3.9) that

Hq(P, P ′) ≤ n

Generalization. We note in passing that for any q ≥ 1, Hq, defined by

Hq(P, P ′) =
dq(P, P ′)

(1 + 2q)1/q

with

dq((x, y), (x′, y′)) = (|x − x′|q + |y − y′|q)1/q

19By this we mean that there are positions P , P ′, Q and Q′ such H1(P, P ′) < H2(P, P ′) and H1(Q, Q′) > H2(Q, Q′). This holds
for example for P = (4, 3), P ′ = (7, 4), Q = (4, 3) and Q′ = (6, 1).

Download free ebooks at bookboon.com

Applications of Prolog

132

Informed Search

is an admissible heuristic.20

Combined heuristic. This we define by

Hco(P, P ′) = max{H1(P, P ′), H2(P, P ′)}

It is of course also admissible and it is a genuine improvement on both H1 and H2 since, as we have seen earlier,
none dominates the other.

A Non-Admissible Heuristic. Define Hmin by

Hmin((x, y), (x′, y′)) = min{|x − x′|, |y − y′|}

This is not admissible since Hmin((7, 2), (1, 8)) = 6 but (7, 2) → (5, 3) → (3, 4) → (2, 6) → (1, 8) is a sequence of
4 moves from (7, 2) to (1, 8). IDA∗ will indeed find this non-optimal sequence of moves if it is used with Hmin.

20The reasoning is as before with the following addenda. It is

dq(P, P ′) = ‖P − P ′‖q

with the q–norm ‖.‖q defined by

‖(x, y)‖q = (|x|q + |y|q)1/q

The Triangle Inequality for dq follows from the Minkowski Inequality for the q–norm

‖P + P ′‖q ≤ ‖P‖q + ‖P ′‖q

See, e.g. [31].

Download free ebooks at bookboon.com

Applications of Prolog

133

Text Processing

Chapter 4

Text Processing

Whereas the problems considered thus far were taken from Artificial Intelligence, we are going now to apply
Prolog to problems in text processing.

The present chapter is in three parts.
First, the Prolog implementation is described of a tool for removing from a file sections of text situated

between marker strings. (The tool is therefore a primitive static program slicer; [32] and [12].) This tool then is
used in a practical context for removing sample solutions from the LATEX source code of a solved exam script.
It is also shown in this context how SWI-Prolog code can be embedded into a Linux shell script.

The second part addresses the question of how Prolog can be used to generate LATEX code for drawing
parametric curves. Some new features of Prolog will thereby also be introduced.

The final part comprises a sequence of solved Prolog exercises, implementing a tool for drawing families of
parametric curves in LATEX. The exercises are of increasing complexity and finally describe how SWI-Prolog
can interact with Linux through a shell script.

4.1 Text Removal

4.1.1 Practical Context

I use LATEX on Linux for preparing examination papers. This is done in the following steps.

1. Create a LATEX source file in a text editor.

2. Translate the LATEX file into a a DVI file.

3. Translate the DVI file into a PDF file.

4. View the PDF file.

These steps are performed for exam.tex by running the Linux commands in Fig. 4.1.1 Upon execution of the
last line in Fig. 4.1, a new window will pop up and the exam paper may be viewed.

External examiners require examination papers with model answers. I create therefore a PDF file with model
solutions in the first instance where answers are appended to each subquestion. The answers are placed between

1bash-3.1$ is the system prompt in Fig. 4.1.

Download free ebooks at bookboon.com

Applications of Prolog

134

Text Processing

�
�

�
�

bash-3.1$ latex exam.tex

bash-3.1$ dvipdf exam.dvi

bash-3.1$ kpdf exam.pdf

Figure 4.1: Processing the File exam.tex

some marker strings enabling me eventually to locate and remove all text between them when creating the final
LATEX source leading to the printed PDF for students. It is this text removal process which is automated by the
Prolog implementation to be discussed here.

4.1.2 Specification

Write a predicate sieve(+Infile,-Outfile,+Startmarker,+Endmarker) of arity 4 for removing all text in
the file named in Infile in between all occurrences of lines starting with text in Startmarker and those
starting with text in Endmarker . The result should be saved in the file named in Outfile . Outfile is without
marker lines. If Outfile already exists, its old version should be overwritten, if it does not exist, it should be
newly created. The file shown in Fig. 4.2 is an example of Infile with the marker phrases ‘water st’ and

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

135

Text Processing

‘water e’, say. (The file comprises a random collection of geographical names.) After the Prolog query

�� 	
Line starting with Startmarker�

�� 	
Line starting with Endmarker�

�� 	
Line starting with Startmarker�

�� 	
Line starting with Endmarker�

}

}

}

}

birmingham

new york

lake district

las vegas

grand canaria

london

water starts

pacific ocean

loch ness

north sea

water ends

kalahari desert

st andreas fault

north pole

water starts

mediterranean sea

lake balaton

lake konstanz

river thames

river danube

water ends

britain

europe

Figure 4.2: The File with waters

?- sieve(’with\ waters’, ’without\ waters’, ’water st’, ’water e’). 2

Yes

the file without_waters will have been created. This is shown in Fig. 4.3.

4.1.3 Implementation

Definition of Predicates

The main predicate sieve/4 is defined in terms of sieve/2 , both are shown in (P-4.1).

2Notice that the sequence of two characters ‘\ ’ represents the underscore. Likewise, ‘\. ’ will have to be typed for the dot in a
filename or marker string.

Download free ebooks at bookboon.com

Applications of Prolog

136

Text Processing

birmingham

new york

lake district

las vegas

grand canaria

london

kalahari desert

st andreas fault

north pole

britain

europe

Figure 4.3: The File without waters

Prolog Code P-4.1: Definition of sieve/4 and sieve/2

1 sieve(File_In, File_Out, Start_String, End_String) :-

2 see(File_In),

3 tell(File_Out),

4 told,

5 append(File_Out),

6 switch_off,

7 sieve(Start_String, End_String),

8 told,

9 seen, !.

10 sieve(Start_String, End_String) :-

11 atom_chars(Start_String, Start_List),

12 atom_chars(End_String, End_List),

13 get_line(Line),

14 ((append(Start_List,_,Line), switch_on); true),

15 (Line = [end_of_file];

16 atom_codes(A,Line),

17 ((switch(off), write(A)); true),

18 ((append(End_List,_,Line), switch_off); true),

19 sieve(Start_String, End_String)).

The predicates get line/1 (and its auxiliary get line/2), switch off/1 and switch on/1 are defined in
(P-4.2).

Download free ebooks at bookboon.com

Applications of Prolog

137

Text Processing

Prolog Code P-4.2: Auxiliaries for (P-4.1)

1 :- dynamic(switch/1).

2 switch_off :- retractall(switch(_)),

3 assert(switch(off)).

4 switch_on :- retractall(switch(_)),

5 assert(switch(on)).

6 get_line(List) :- get_line([], List).

7 get_line(Acc, List) :- get_char(Next),

8 ((Next = ’\n’, reverse([Next|Acc], List));

9 (Next = end_of_file, List = [Next]);

10 get_line([Next|Acc], List)).

For the SWI-Prolog built-ins atom chars/2 and atom codes/2 , the reader is referred respectively to pages
126 and 19 of [9].

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

138

Text Processing

Noteworthy are three more built-in predicates used here: the standard Prolog predicates see/1 , seen/0 (re-
spectively for directing the input stream to a file and redirecting it) and get char/1 for reading a character;
the example below illustrates their use by reading the first three characters of the file with_waters in Fig. 4.2.

?- see(with waters), get char(First), get char(Sec), get char(Third), seen.

First = b

Sec = i

Third = r

Yes

Details of Implementation

• The predicate get line/1 in (P-4.2) is defined in terms of get line/2 by the accumulator technique. It
reads into its argument the next line from the input stream. Example:

?- set prolog flag(toplevel print options, [max depth(20)]).

Yes

?- see(with waters), get line(First), get line(Sec), seen.

First = [b, i, r, m, i, n, g, h, a, m,

]

Sec = [n, e, w, , y, o, r, k,

]

Yes

The following observations apply.

1. It is seen from the above query that a line read by get line/1 is represented as a list of the characters
it is composed of.

2. By definition the last character of each line in a file is the new line character ‘\n’. That explains the
line break seen in the above query.

3. Finally (not demonstrated here), each file ends with the end-of-file marker ‘end_of_file’. The
one-entry list [end_of_file] is deemed to be the last line of every file by the definition in (P-4.2).

• The switches switch off/0 and switch on/0 are used, writing respectively switch(off) and switch(on)

in the Prolog database, respectively for removal and retention of lines from the input file.

• The main predicates are sieve/4 and sieve/2 in (P-4.1), the latter defined by recursion and called by
the former.

sieve/4 : this is the top level predicate.

1. Line 2 opens the input file.

2. The goals in lines 3-4 in (P-4.1) make sure that the earlier version of the output file (if there is such
a file) is deleted.

3. In line 5, the new output stream is opened via append/1 3.

4. In line 6, the switch is set to the position (‘off’), anticipating that initially lines will be retained.

3Not to be confused with the predicate append/3 !

Download free ebooks at bookboon.com

Applications of Prolog

139

Text Processing

5. In line 7, sieve/2 is invoked and processing is carried out.

6. Lines 8 and 9 close respectively output and input.

sieve/2 : this is called from sieve/4 .

1. Lines 14 and 18 contain the most interesting feature of this predicate: append/3 is used in them for
pattern matching. For example, the goal

append(Start_List,_,Line)

succeeds if the initial segment of the list Line is Start_List.

2. atom chars/2 is used in sieve/2 to disassemble the start and end markers into lists in preparation
for pattern matching.

3. Notice that the built-in predicate atom codes/2 can be used in two roles as the interactive session
below demonstrates.

?- atom_codes(A,[b, i, r, m, i, n, g, h, a, m]).

A = birmingham

Yes

?- atom_codes(birmingham, L).

L = [98, 105, 114, 109, 105, 110, 103, 104, 97, 109]

Yes

In line 16 of (P-4.1), atom codes/2 is used in its first role, i.e. to convert a list of characters to an
atom. This atom is the current line, it is written to the output file.

4. Recursion is stopped in sieve/2 (and control is returned to line 8 of sieve/4) when the end-of-file
marker is read (line 15).

4.1.4 Using a Linux Shell Script

Specification

Imbed the Prolog implementation from Sect. 4.1.3 into a Linux shell script for providing the same functionality
as the predicate sieve/4 does. The application obtained thereby will run without explicitly having to use the
SWI-Prolog system. The intended behaviour of the script is illustrated in Fig. 4.4. The dialogue shown in
Fig. 4.4 has the same effect as the Prolog session envisaged in Sect. 4.1.2.

[22] is an accessible introduction to Linux and the beginnings of shell scripting.

Implementation

Plan

Download free ebooks at bookboon.com

Applications of Prolog

140

Text Processing

�

�

�

�

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

% /home/acsenki/scripts/sieve.pl compiled 0.00 sec, 4,284 bytes

Input file : ’with waters’

Output file: ’without waters’

Text removal between the phrases ’water st’ and ’water e’

bash-3.1$ cat without waters

birmingham

new york

lake district

las vegas

grand canaria

london

kalahari desert

st andreas fault

north pole

britain

europe

Figure 4.4: Running the Shell Script sieve

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

141

Text Processing

The shell script should

1. Receive four arguments from the user (two filenames and two pattern strings),

2. Write them to a temporary file temp,

3. Invoke SWI-Prolog in the batch mode, which then

• Should open the temporary file temp,

• Should read the strings from temp,

• Should call sieve/4 to perform text removal,

• Should close temp

4. Close the Prolog system,

5. Report on the actions performed,

6. Delete temp.

Shell Script and Additional Prolog Predicates
The Linux shell script sieve in (S-4.1) is an implementation of the plan.

Linux Shell Script S-4.1: sieve

1 #!/bin/bash

2 if [$# -ne 4]; then

3 echo "Error: supply four arguments"

4 else

5 if [-e $1]; then

6 echo $1 > temp

7 echo $2 >> temp

8 echo $3 >> temp

9 echo $4 >> temp

10 #

11 pl -f sieve.pl -g go -t halt

12 #

13 echo "Input file : ’$1’"

14 echo "Output file: ’$2’"

15 echo "Text removal between the phrases ’$3’ and ’$4’"

16 #

17 rm temp

18 else

19 echo "Error: file ’$1’ does not exist"

20 fi

21 fi

In line 11 of (S-4.1), the Prolog source sieve.pl is invoked as a command line argument [33, Sect. 2.3]. sieve.pl
comprises (P-4.1), (P-4.2) from Sect. 4.1.3 and the code in (P-4.3).

Download free ebooks at bookboon.com

Applications of Prolog

142

Text Processing

Prolog Code P-4.3: Definition of go/0 and get string/1

1 go :- see(temp),

2 get_string(File_In),

3 get_string(File_Out),

4 get_string(Start_String),

5 get_string(End_String),

6 sieve(File_In, File_Out, Start_String, End_String),

7 seen.

8 %

9 % auxiliary predicate get_string/1 ...

10 %

11 get_string(String) :- get_line(List),

12 append(ShortList, [’\n’],List),

13 atom_chars(String, ShortList).

In go/0 from sieve.pl the existence of a file named temp is assumed, comprising four lines, the two file names
(input and output files) and the two marker patterns, forming one line each. The top level predicate is now
go/0 which then uses sieve/4 .
Running the Script

The script sieve makes (and eventually deletes) a temporary file temp, holding the four strings read by the
predicate go/0 . The script invokes the Prolog source sieve.pl, effecting a result as specified in Sect. 4.1.2.
Some additional features are also demonstrated in the Linux command window Fig. 4.5.

�

�

�

�

bash-3.1$ chmod -x sieve

bash-3.1$ ls -l sieve

-rw--w----+ 1 acsenki 2042 426 Sep 2 16:11 sieve

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

bash: ./sieve: Permission denied

bash-3.1$ chmod +x sieve

bash-3.1$./sieve with\ waters without\ waters water\ st

Error: supply four arguments

bash-3.1$./sieve with\ waters without\ waters water\ st water\ e

Input file : ’with waters’

Output file: ’without waters’

Text removal between the phrases ’water st’ and ’water e’

bash-3.1$ ls temp

ls: temp: No such file or directory

Figure 4.5: Another Run of the Shell Script sieve

Comments on Fig. 4.5.

1. The first three commands illustrate what happens if initially sieve is not executable.

2. The fourth command makes sieve executable.

3. The fifth command illustrates the script’s response if less than four arguments are supplied.

Download free ebooks at bookboon.com

Applications of Prolog

143

Text Processing

4. The next command shows the normal mode of operation. The response has to be read in conjunction
with (S-4.1). The output file created is without_waters; it is of course identical to that in Fig. 4.3.

5. The last command confirms that the temporary file temp has been removed.

4.1.5 Application: Removing Model Solutions

part_sln.tex (shown in Fig. 4.6) is a file forming part of a collection of LATEX source files to be assembled to a
single LATEX source. Text between the user-defined LATEX commands \solstart and \solend forms part of a

...

\definecolor{hellgrau}{gray}{0.85}
\newcommand{\solstart}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{Start Solution}- - - - - - - - - - - -}\end{center}}

\newcommand{\solend}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{End Solution}- - - - - - - - - - - -}\end{center}}

...

\begin{itemize}

\item

First question.

\item

Second question.

\end{itemize}

\solstart

\begin{itemize}

\item

Answer to first question.

\item

Answer to second question.

\end{itemize}

\solend

Further questions.

...

Figure 4.6: The File part sln.tex

model solution of exam questions, not to be shown to students in the final version. Fig. 4.7 shows the structure
of the printed version of the exam script with solutions.

The task is to use the shell script sieve for producing the file part.tex from part_sln.tex; the latter is

Download free ebooks at bookboon.com

Applications of Prolog

144

Text Processing

...

• First question.

• Second question.

- - - - - - - - - - - - Start Solution - - - - - - - - - - - -

• Answer to first question.

• Answer to second question.

- - - - - - - - - - - - End Solution - - - - - - - - - - - -

Further questions.

...

Figure 4.7: Structure of the Printed Exam Script with Solutions

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

145

Text Processing

shown in Fig. 4.8. In part.tex, all lines between \solstart and \solend have been removed, including the
marker lines themselves.

...

\definecolor{hellgrau}{gray}{0.85}
\newcommand{\solstart}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{Start Solution}- - - - - - - - - - - -}\end{center}}

\newcommand{\solend}{\begin{center}\textbf{- - - - - - - - - - - -

\fcolorbox{black}{hellgrau}{End Solution}- - - - - - - - - - - -}\end{center}}

...

\begin{itemize}

\item

First question.

\item

Second question.

\end{itemize}

Further questions.

...

Figure 4.8: The File part.tex

It is seen in Fig. 4.8 in particular that the text between the marker phrases (\solstart and \solend) is
removed only if they are the first phrase of their respective lines. (This is why the command definitions in
Fig. 4.8 are still there.)�

!

"
bash-3.1$./sieve part\ sln\.tex part\.tex \\solstart \\solend

% /home/acsenki/scripts/sieve.pl compiled 0.01 sec, 4,284 bytes

Input file : ’part sln.tex’

Output file: ’part.tex’

Text removal between the phrases ’\solstart’ and ’\solend’

Figure 4.9: Running the Shell Script sieve

The task was achieved by running the shell script as shown in Fig. 4.9. Fig. 4.9 illustrates how string
arguments containing the backslash character or the dot are used when running the shell script.

Download free ebooks at bookboon.com

Applications of Prolog

146

Text Processing

4.2 Text Generation and Drawing with LATEX

4.2.1 Cycloids

Cycloids are a class of plain curves, well known from the Calculus of Variations (see e.g. the early classic [13,
p. 26] or [26, Ch. 22, p. 844]). A cycloid is described by a point P attached to a disc rolling on a straight line
(the base line) (Fig. 4.10). The following notation will be used.

• r is the radius of the disc,

• a is the distance of P = (x, y) from the disc’s centre C,

• φ is the angle of rotation of the disc, measured in radians, clockwise positive.

The disc rests initially on the co-ordinate origin, therefore, C = (0, r) and P = (0, r − a) for φ = 0; this is the
disc on the left in Fig. 4.10. If P is outside the disc (a > r) the curve generated is a prolate cycloid (Fig. 4.11);
if it is inside (a < r) a curtate cycloid is obtained (Fig. 4.12); and, if it is on the perimeter of the disc (a = r) a
common cycloid (Fig. 4.13) is obtained. (For cycloids and other plane curves a good reference is [11, p. 165].)
The co-ordinates of a point on the cycloid are given by

�

�

×
•C

P

� ×• C′
P ′

�

�
r

�

�
a

Figure 4.10: Drawing a Cycloid (φ = π/2)

x = rφ − a sinφ, (4.1)

y = r − a cosφ. (4.2)

The disc on the right in Fig. 4.10 is obtained by rotating the initial disc clockwise by φ = π/2. According to
(4.1)-(4.2), P ’s new position is P ′ = (rφ − a sin φ, r − a cosφ) = (rπ/2 − a, r), whereas C obviously moves to
C′ = (rφ, r) = (rπ/2, r).

�

�

Figure 4.11: Prolate Cycloid Drawn with \writecurve from Fig. 4.14 (r = 5, a = 8, 3.5 revs)

Download free ebooks at bookboon.com

Applications of Prolog

147

Text Processing

�

�

Figure 4.12: Curtate Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 3, 3.5 revs)

�

�

Figure 4.13: Common Cycloid Drawn with \writecurve similar to Fig. 4.14 (r = 5, a = 5, 3.5 revs)

4.2.2 Task

Define a Prolog predicate which will generate a LATEX command for drawing a cycloid of a given description.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

148

Text Processing

The only tool available is the LATEX package epic (e.g. [14]).

The package epic provides the command \drawline for connecting a sequence of points by a straight line
segment . The syntax of this command is

\drawline[stretch](x1, y1)(x2, y2)...(xn, yn)

where stretch is an optional parameter (not used here) and (x1, y1)(x2, y2)...(xn, yn) is the sequence of co-
ordinates of the points to be connected. The task is to define a Prolog predicate define command/4 for
displaying on the terminal text which is essentially the LATEX command sought. This is illustrated in Fig. 4.14.
The text so obtained is then pasted (after possibly some minor modifications) into the desired location in the#

$

%

&
?- define command(5, 8, 3.5, 100).
\newcommand{\writecurve}{\drawline(0,-3)(-0.645588,-2.80733)
(-1.20712,-2.23862)(-1.60458,-1.32124)(-1.76588,-0.099392)(-1.63027,1.36808)

...
(101.754,11.3212)(104.35,12.2386)(107.111,12.8073)(109.956,13.0)}
Yes

Figure 4.14: Generating the LATEX Command \writecurve with define command/4

LATEX source file. The curve thus drawn will comprise a sequence of straight line segments, an approximation to
the specified cycloid, looking like as a smooth curve if the subdivision of the parameter interval is fine enough.
Fig. 4.11, for example, was drawn by applying the LATEX code (L-4.1). (The LATEX command \writecurve, as
generated by Prolog in Fig. 4.14, is used in line 9 of (L-4.1).)

LATEX Code L-4.1: Drawing Fig. 4.11

1 \begin{figure}[h]

2 \begin{center}

3 \setlength{\unitlength}{1mm}

4 \begin{picture}(118,16)(0,0)

5 \thicklines

6 \put(5,-5){\vector(0,1){21}}

7 \put(0,0){\vector(1,0){115}}

8 \thinlines

9 \put(5,5){\makebox(0,0){\writecurve}}

10 \end{picture}

11 \end{center}

12 \caption{Prolate Cycloid Drawn with \texttt{\writecurve} from

13 Fig.~\ref{textprocessing:cycloids:generatecommand}

14 ($r=5$, $a=8$, 3.5 revs)}

15 \label{textprocessing:cycloids:fig:prolate}

16 \end{figure}

4.2.3 Solution

The Prolog predicates for generating the LATEX command \writecurve are shown in (P-4.4).

Download free ebooks at bookboon.com

Applications of Prolog

149

Text Processing

Prolog Code P-4.4: Prolog Code Generating \writecurve

1 cyc(R, A, Alpha, Pair) :- Pi is 3.1415926,

2 Rad is Alpha * Pi / 180,

3 S is sin(Rad),

4 C is cos(Rad),

5 X is R * Rad - A * S,

6 Y is R - A * C,

7 concat atom([’(’,X,’,’,Y,’)’], Pair).

8 mesh(Revs, NInt, List) :- mesh(Revs, NInt, NInt, List, []), !.

9 mesh(, , 0, [0|Acc], Acc).

10 mesh(Revs, NInt, NumInt, List, Acc) :-

11 H is NumInt * (Revs * 360 / NInt),

12 NewNumInt is NumInt - 1,

13 mesh(Revs, NInt, NewNumInt, List, [H|Acc]).

14 pairs(R, A, Revs, NInt, Pairs) :- mesh(Revs, NInt, Mesh),

15 maplist(cyc(R,A), Mesh, Pairs).

16 define command(R, A, Revs, NInt) :-

17 pairs(R, A, Revs, NInt, Pairs),

18 concat atom([’\\newcommand{\\writecurve}{\\drawline’|Pairs], Atom),

19 concat atom([Atom,’}’], C),

20 write(C).

Comments on, and Exemplification of (P-4.4).

1© Let r = 10, a = 4 and C = (0, 10). A counterclockwise rotation by α = 90◦ (& associated roll of the disc
to the right) moves the point P = (0, 6) to P ′ = (11.708, 10.0).

?- cyc(10, 4, 0, Pair).

Pair = ’(0,6)’

Yes

- cyc(10, 4, 90, Pair).

Pair = ’(11.708,10.0)’

Yes

cyc/3 is essentially an implementation of (4.1)-(4.2) with the proviso that rotations are measured in
degrees. The output of cyc/3 is an atom.

2© Let us asume that we want to plot the path of P between the two positions from 1©, involving a quarter
turn clockwise. A crude approximation will take snapshots corresponding to the positions 0◦, 15◦, 30◦,
45◦, 60◦, 75◦ and 90◦. The number of intervals involved is therefore 6 (each of length 15◦). The 7
gridpoints are generated as a list by mesh/3 thus

?- mesh(0.25, 6, List).

List = [0, 15, 30, 45, 60, 75, 90]

Yes

Download free ebooks at bookboon.com

Applications of Prolog

150

Text Processing

3© A sequence of points on the path of P is generated by pairs/5 . For example, the 7 pairs of co-ordinates
of P in 2© are obtained by

?- pairs(10, 4, 0.25, 6, Pairs).

Pairs = [’(0,6)’, ’(1.58272,6.1363)’, ’(3.23599,6.5359)’, ’(5.02555,7.17157)’,

’(7.00787,8.0)’, ’(9.22627,8.96472)’, ’(11.708,10.0)’]

Yes

pairs/5 uses mesh/3 as an auxiliary. Furthermore, cyc/5 is used in partial application in the second
goal in the definition of pairs/5 in the first argument of maplist/3 . The output of pairs/5 is a list of
atoms. They represent the co-ordinates of the points which will form the vertices of the approximating
polygon. \drawline from epic will be used to connect them.

4© define command/4 essentially concatenates the list entries from 2© thus

?- define_command(10, 4, 0.25, 6).

\newcommand{\writecurve}{\drawline(0,6)(1.58272,6.1363)(3.23599,6.5359)(5.02555,7.17157)

(7.00787,8.0)(9.22627,8.96472)(11.708,10.0)}

Yes

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

151

Text Processing

5© Numbers whose modulus is very small or very large are displayed by default in Prolog in the scientific
number format (the ‘exponential notation’). If applicable, change such numbers to be displayed in the
floating point format using the ‘non-exponential notation’. For example, 1/888888 will be displayed as
1.125e− 06. Change this to 0.000001125 in the LATEX file.4 (Notice that this point does not apply to the
output generated in 4©.)

6© Now the LATEX command \writecurve is ready to be used inside a figure and it will draw the desired
cycloid. Fig. 4.15 was drawn with the \writecurve LATEX command from 4©; the code for Fig. 4.15 is
not shown here as it is very similar to that shown in (L-4.1).

�

�

Figure 4.15: ‘Quarter’ Cycloid Drawn with \writecurve (r = 10, a = 4, 1/4 revs)

4.3 Exercises

Exercise 4.1. The predicate sieve/4 was defined in Sect. 4.1 for removing text situated between some spec-
ified pairs of markers. Define now a predicate retain/4 for retaining text between some specified pairs of
markers. (Such a predicate could be used, for example, for extracting all figures from a LATEX document.) Use
your Prolog implementation in a shell script for solving the same task. �

Exercise 4.2. The two circles shown in Fig. 4.10 were drawn with the user-defined LATEX command
\defcirc. The definition of \defcirc was generated interactively by running the predicate circ command/4

as shown in Fig. 4.16. (L-4.2) shows a partial view of the LATEX picture environment defining Fig. 4.10: lines#

$

%

&
?- circ command(10, 0, 0, 100).
\newcommand{\defcirc}{\drawline(10,0)(9.98027,0.627905)
(9.92115,1.25333)(9.82287,1.87381)(9.68583,2.4869)(9.51057,3.09017)
...

(9.82287,-1.87381)(9.92115,-1.25333)(9.98027,-0.627906)(10.0,-1.0718e-06)}
Yes

Figure 4.16: Generating the LATEX Command \defcirc with circ command/4

9 and 11 illustrate the use of \defcirc.

4The alternative is using sformat/3 (formatted write) in (P-4.4) for displaying numbers in non-exponential notation; see Exer-
cise 4.3.

Download free ebooks at bookboon.com

Applications of Prolog

152

Text Processing

LATEX Code L-4.2: Partial view of the LATEX code for Fig. 4.10

1 \begin{figure}[h]

2 \begin{center}

3 \setlength{\unitlength}{1mm}

4 \begin{picture}(118,25)(0,0)

5 \thicklines

6 \put(25,-5){\vector(0,1){30}}

7 \put(0,-2){\vector(1,0){115}}

8 \thinlines

9 \put(25,8){\makebox(0,0){\defcirc}}
10 ...

11 \put(40.707963,8){\makebox(0,0){\defcirc}}
12 ...

13 \end{picture}

14 \end{center}

15 \caption{Drawing a Cycloid}\label{textprocessing:fig:definingcycloid}

16 \end{figure}

Define the Prolog predicate circ command(+Radius, +CentreX, +CentreY, +NInt) 5 for displaying on the
terminal LATEX code defining \defcirc.

As before, assume that only basic LATEX and the epic package are available.6 �

Exercise 4.3. You will have defined in Exercise 4.2 a Prolog predicate circ command/4 the output of
which may have to be put through the manual processing step described in 5© of Sect. 4.2.3. This exercise is
about writing an improved implementation of circ command/4 , called imp circ command/4 , that will obviate
this since its output will contain pairs of numbers in non-exponential notation only.

The ‘old’ version of the predicate may be used to define a command for a circle of radius 10 with centre
(0, 10) by approximating the circle with a regular 20 sided polygon (Fig. 4.17). Both entries of the sixteenth�

�

�

�

?- circ command(10, 0, 10, 20).
\newcommand{\defcirc}{\drawline(10,10)(9.51057,13.0902)
(8.09017,15.8779)(5.87785,18.0902)(3.09017,19.5106)(2.67949e-07,20.0)
(-3.09017,19.5106)(-5.87785,18.0902)(-8.09017,15.8779)(-9.51057,13.0902)
(-10.0,10.0)(-9.51057,6.90983)(-8.09017,4.12215)(-5.87785,1.90983)

(-3.09017,0.489435)(-8.03847e-07,3.19744e-14)(3.09017,0.489435)(5.87785,1.90983)
(8.09017,4.12215)(9.51056,6.90983)(10.0,10.0)}
Yes

Figure 4.17: Generating the LATEX Command \defcirc with circ command/4

pair in Fig. 4.17 are in the exponential notation, something LATEX won’t accept. The modified version produces
essentially the same output with all the numbers in the floating point notation (Fig. 4.18).

You should define imp circ command/4 by using the SWI-Prolog built-in predicate sformat/3 .

Hint.

The predicate sformat/3 is there for producing formatted output returned as a string. Use the ‘f’ format (for
floating point, non-exponential) in the second argument of sformat/3 . For further information, see [6, p. 493]

5NInt denotes the number of intervals used when discretising a full revolution.
6In basic LATEX \circle is used to draw circles. It allows, however, to draw circles up to a certain size only.

Download free ebooks at bookboon.com

Applications of Prolog

153

Text Processing

�

�

�

�

?- imp circ command(10, 0, 10, 20).
\newcommand{\defcirc}{\drawline(10.0000000,10.0000000)
(9.5105652,13.0901699)(8.0901700,15.8778524)(5.8778527,18.0901698)
(3.0901701,19.5105651)(0.0000003,20.0000000)(-3.0901696,19.5105653)
(-5.8778522,18.0901702)(-8.0901697,15.8778529)(-9.5105650,13.0901704)

(-10.0000000,10.0000005)(-9.5105653,6.9098306)(-8.0901703,4.1221480)
(-5.8778531,1.9098305)(-3.0901707,0.4894351)(-0.0000008,0.0000000)

(3.0901691,0.4894346)(5.8778518,1.9098295)(8.0901694,4.1221467)
(9.5105648,6.9098291)(10.0000000,9.9999989)}
Yes

Figure 4.18: Generating the LATEX Command \defcirc with imp circ command/4

and [33]. �

Exercise 4.4. We are now in a position to address the generation of LATEX code for any parametric
two-dimensional curve. The aim is to define a predicate

gen command2(+CName, +Fun, +Lower, +Upper, +NInt, +Pars) (4.3)

The arguments and the intended working of gen command2/6 are best explained with reference to an example.

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

154

Text Processing

The curve we are going to use is the improved circle imp circ/5 from (P-A.11), p. 193 (solution of Exercise 4.3).

The LATEX command for drawing a polygonial approximation with four sides to the lower half of a circular
arc with radius 10, centre (0, 10) should be generated thus

?- gen command2(’\\halfcirc’, imp circ, 180, 360, 4, [10,0,10]).

\newcommand{\halfcirc}{\drawline(-10.0000000,10.0000005)(-7.0710683,2.9289327)(-0.0000008,0.0000000)

(7.0710671,2.9289315)(10.0000000,9.9999989)}

Once this command definition is in the LATEX code, \halfcirc is ready to be used in a figure. (The output may
then look like the polygon in Fig. 4.19.) The arguments in (4.3) are easily matched to their respective values

�

�

������
��
�

Figure 4.19: Polygon Drawn with \halfcirc

in the query. On the other hand, imp circ(+R, +X, +Y, +Alpha, -Pair) , the predicate from (P-A.11), has

1. Three fixed (input) parameters: radius R , and the two co-ordinates of the centre X and Y ;

2. One argument: angle of rotation Alpha , measured counterclocwise positive from the circle’s rightmost
point;

3. One output: Pair , returned as a string.

The following is taking place in the query above.

• The command name CName in (4.3) is unified with the string ‘\halfcirc ’;

• The predicate name Fun is unified with ‘imp circ ’;

• The domain of the argument Alpha is the interval [Lower, Upper] = [180, 360]. It is subdivided into
NInt (= 4) intervals of equal length. The function values (pairs) are calculated internally for all interval
endpoints, i.e. the 5 values of Alpha , [180, 225, 270, 315, 360];

• The argument Pars (list of parameters) is unified with [10, 0, 10], amounting to the unifications R = 10,
X = 0, Y = 10;

• And, finally, after some processing, the command definition is written to the terminal.

Download free ebooks at bookboon.com

Applications of Prolog

155

Text Processing

Built-in Predicate: apply(+Pred,+List)

Uses the entries of List as arguments to the predicate Pred . Partial applica-
tion of Pred is possible. The examples below refer to a polynomial defined by
the predicate pol/5 ,

pol(A, B, C, X, Y) :- Y is A + B * X + C * Xˆ2.

?- pol(4, 3, 2, 10, Y).

Y = 234

Yes

?- apply(pol, [4, 3, 2, 10, Y]).

Y = 234

Yes

?- apply(pol(4, 3), [2, 10, Y]).

Y = 234

Yes

apply/2 is a higher order predicate. Use apply(+Pred, +List) to invoke Pred

whose arity is not known at compile time.

Detailed Plan.

The main point is to recognize the need to be able to pass on a predicate name as an argument. The built-in
predicate apply/2 is used to accomplish that. The implementation described here has a ‘functional flavour’.

1. Write a predicate gen mesh(+Lower, +Upper, +NInt, -Mesh) for generating a list of meshpoints.

?- gen mesh(180, 360, 4, Mesh).

Mesh = [180, 225, 270, 315, 360]

Yes

2. Define a predicate applic(+Fun, +Pars, +Argument, -Outcome) for calculating values of a function,
defined by a predicate. For example, instead of having

?- imp_circ(10, 0, 10, 225, Outcome).

Outcome = ’(-7.0710683,2.9289327)’

Yes

we may now equivalently do

?- applic(imp circ, [10, 0, 10], 225, Outcome).

Outcome = ’(-7.0710683,2.9289327)’

Yes

The two queries may deliver the same but the second one will be preferable in our context as it allows the
predicate name to be passed on as an argument; applic/4 is therefore a higher order predicate. Notice
that the order of the arguments supplied to Fun is replicated by the entries of the list Pars and the
arguments Argument and Outcome .

Hint. Use the built-in predicate apply/2 . (See inset.)

Download free ebooks at bookboon.com

Applications of Prolog

156

Text Processing

3. Define a predicate gen vals(+Fun, +Lower, +Upper, +NInt, +Pars, -Vals) for calculating the list of
values taken by a given function at equidistant gridpoints. Example:

?- gen vals(imp circ, 180, 360, 4, [10,0,10], Vals).

Vals = [’(-10.0000000,10.0000005)’, ’(-7.0710683,2.9289327)’, ’(-0.0000008,0.0000000)’,

’(7.0710671,2.9289315)’, ’(10.0000000,9.9999989)’]

Yes

Use here gen mesh/4 and applic/4 from above. Furthermore, use also the built-in predicate maplist/3 .

4. Finally define gen command2(+CName, +Fun, +Lower, +Upper, +NInt, +Pars) ; it should behave as ex-
emplified on p. 154.

�

Exercise 4.5. The logarithmic spiral in Fig. 4.20 was drawn with the LATEX command \spiral the definition
of which was generated with Prolog by using gen command2/6 from Exercise 4.4.

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

157

Text Processing

?- gen command2(’\\spiral’, log spiral, 0, 2160, 300, [85, 0, 0]).

\newcommand{\spiral}{\drawline(1.0000000,0.0000000)(1.0030823,0.1267188)(0.9901165,0.2542187)

...

(25.6446869,-6.5844539)(26.5581065,-3.3550864)(27.0651201,-0.0000174)}

Yes

�

�

Figure 4.20: Logarithmic Spiral Drawn with \spiral

Define the predicate log spiral(+Alpha, +CentreX, +CentreY, +RotAngle, -Pair) and then redraw in
LATEX the spiral on Fig. 4.20.

Hint. As is well known (e.g. [2]), a point on the logarithmic spiral with Cartesian co-ordinates (r cosφ, r sin φ)
is defined by r = ekφ with k = cotα, where (r, φ) are the point’s polar co-ordinates and α is the constant (acute)
angle at which the spiral cuts all rays emitted from the origin. (φ and α are both measured in radians in these
formulae.) In the above query, we have made 2160◦/360◦ = 6 revolutions, subdivided the interval [0◦, 2160◦] into
300 intervals of equal length, and, the angle α measured 85◦. (Obviously, the arguments Alpha and RotAngle

in log spiral/5 are both measured in degrees .) The pole was taken to be the origin (0, 0).
Note. An entire section is devoted to spirals in the beautiful book [25]. Questions concerning their self-

similarity occupy the authors’ attention. �

Exercise 4.6. You are asked to defined the predicate curves/2 in this exercise. It will simplify and
automate the command definitions considered in Exercise 4.4.

Assume that we want to draw possibly several parametric curves in LATEX each of which we can in isolation
specify, generate and draw as described in Exercise 4.4. The pasting-in from the terminal of the LATEX codes
generated is cumbersome and error prone as it is a manual step. Therefore, we want to be able to create a
file where all the LATEX code will be deposited, ready to be included into our LATEX document via \include.
Furthermore, the curves’ interactive specifications (via the keyboard) is also best avoided for the same reason;
the preferred way of doing this is via some input file.

Illustrative Example.

Download free ebooks at bookboon.com

Applications of Prolog

158

Text Processing

�

�

Figure 4.21: Growing Spirals

We want to generate Fig. 4.21 containing four spirals. The LATEX command for each of the four spirals can
be generated by gen command2/6 from Exercise 4.4. (It is assumed of course that the predicate log spiral/5

from Exercise 4.5 is available.) Once curves/2 is available, we can solve this task in the following three steps.

1© Create a file stating the four curves’ specifications in terms of gen command2/6 ; this has been done here
in spirals shown in Fig. 4.22. The lines in spirals whose first character is % serve as comment lines.

%%

% %

% Spirals specified via gen command2/6 ... %

% %

%%

%

% gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0]). ...

%

gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0])

%

% gen command2(’\\smallspiral’, log spiral, 0, 720, 72, [85, 0, 0]). ...

%

gen command2(’\\smallspiral’, log spiral, 0, 720, 72, [85, 0, 0])

%

% gen command2(’\\normalspiral’, log spiral, 0, 1080, 108, [85, 0, 0]). ...

%

gen command2(’\\normalspiral’, log spiral, 0, 1080, 108, [85, 0, 0])

%

% gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0]). ...

%

gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0])

%

Figure 4.22: The File spirals

2© Perform now the following Prolog dialogue.

?- consult(draw).

% draw compiled 0.00 sec, 11,432 bytes

Yes

?- curves(’spirals’, ’spirals.tex’).

Yes

Download free ebooks at bookboon.com

Applications of Prolog

159

Text Processing

3© The file spirals.tex will have been created in step 2©. This is shown in Fig. 4.23. Notice that

%%

% %

% Spirals specified via gen command2/6 ... %

% %

%%

%

% gen command2(’\\tinyspiral’, log spiral, 0, 360, 36, [85, 0, 0]). ...

%

\newcommand{\tinyspiral}{\drawline(1.0000000,0.0000000)(0.9999608,0.1763201)

...

(1.6805635,-0.2963289)(1.7327464,-0.0000002)}

%

...

...

%

% gen command2(’\\largespiral’, log spiral, 0, 1440, 144, [85, 0, 0]). ...

%

\newcommand{\largespiral}{\drawline(1.0000000,0.0000000)(0.9999608,0.1763201)

...

(8.7429878,-1.5416285)(9.0144653,-0.0000039)}

%

Figure 4.23: The File spirals.tex

spirals.tex is a valid LATEX file best included into the LATEX source by means of \include{spirals}.
Lines starting in spirals with % are copied unchanged by curves/2 into spirals.tex, becoming thereby
LATEX comment lines. curves/2 uses gen command/6 to generate the commands specifying the curves,
here the four spirals.

Define the predicate curves/2 !

Hint. Use apply/2 to call a predicate whose name is known at runtime only. For example, in the query
below, after defining the predicate pol/5 the variable Pred is unified with pol(4, 3, 2, 10, Y) and then
the goal pol(4, 3, 2, 10, Y) is satisfied via the call apply(Pred, []) .

?- consult(user).

|: pol(A, B, C, X, Y) :- Y is A + B * X + C * X * X.

|:
�� ��Ctrl +
�� ��D

% user://1 compiled 0.01 sec, 392 bytes

Yes

?- Pred = pol(4, 3, 2, 10, Y), apply(Pred, []).

Pred = pol(4, 3, 2, 10, 234)

Y = 234

Yes

�

Exercise 4.7. Embed the predicate curves/2 from Exercise 4.6 into a Linux shell script called ‘curves’
for creating a LATEX file for defining parametric curves. The shell script will use two arguments corresponding to
those of curves/2 . (This solution will have the benefit of the underlying Prolog application remaining hidden

Download free ebooks at bookboon.com

Applications of Prolog

160

Text Processing

from the user.)

Illustrative Example.

Running the script curves as shown in Fig. 4.24 will have the same effect as applying the predicate curves/2
in step 2© of Exercise 4.6. The file spirals.tex created thereby was copied by means of the last line of Fig. 4.24�

�

�

�

csenki@linux:∼/scripts> ./curves spirals spirals\.tex

% /home/csenki/scripts/draw.pl compiled 0.00 sec, 11,800 bytes

Input file : ’spirals’

Output file: ’spirals.tex’

LaTeX source ’spirals.tex’ created

csenki@linux:∼/scripts> cp spirals.tex ∼/texmatter/ventus

Figure 4.24: Running the Shell Script curves

into a directory where all LATEX source for the present document is kept. (This copy was made subsequently
part of the LATEX source by writing ‘\include{spirals}’ in the source’s top level file.) �

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

161

Solutions of Selected Exercises

Appendix A

Solutions of Selected Exercises

A.1 Chapter 1 Exercises

All Prolog source code for Chap. 1 is available in the file enigma.pl.

Exercise 1.1. We first disassemble the list and then assemble the reduced list by leaving out one element:

remove_one(List,E,Reduced) :- append(Front,[E|Back],List),

append(Front,Back,Reduced).

Exercise 1.2. Define

var_matrix(Size,M) :- repeat(Size,Size,RowLengths),

maplist(var_list,RowLengths,M).

with the predicate repeat/3 ,

repeat(X,1,[X]) :- !.

repeat(X,N,[X|R]) :- NewN is N - 1,

repeat(X,NewN,R).

for producing lists with the same entry repeated a specified number of times.

Exercise 1.3. We show three approaches. The first is, as originally suggested, by recursion.

list_permute([],_,[]).

list_permute([P1|Rest],L,[H|T]) :- nth1(P1,L,H),

list_permute(Rest,L,T).

An alternative definition uses bagof/3 .

?- Perm = [3,1,2], L = [R1, R2, R3], bagof(E, I^(member(I,Perm), nth1(I,L, E)),P).

Perm = [3, 1, 2]

L = [_G642, _G645, _G648]

P = [_G648, _G642, _G645]

Finally, we may use maplist/3 as indicated by the query below.

Download free ebooks at bookboon.com

Applications of Prolog

162

Solutions of Selected Exercises

?- dynamic(nth1 new/3), retractall(nth1 new(, ,)), assert(nth1 new(L, I, E) :- nth1(I, L, E)),

Perm = [3,1,2], L = [R1, R2, R3], maplist(nth1_new(L),Perm,P).

Perm = [3, 1, 2]

L = [_G1122, _G1125, _G1128]

P = [_G1128, _G1122, _G1125]

Exercise 1.4. The predicate col/3 , defined by

col(Matrix,N,Column) :- maplist(nth1(N),Matrix,Column).

returns a specified column of a matrix as a list. We now assemble the transposed matrix T as the list of the
columns of the original matrix M .

transpose(M,T) :- [H|_] = M, % get H to measure NCols

length(H,NCols),

bagof(N,between(1,NCols,N),L),

maplist(col(M),L,T).

Exercise 1.5. The predicate notin/2 , defined by

notin(_,[]).

notin(E,[H|T]) :- E \== H, notin(E,T).

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

163

Solutions of Selected Exercises

succeeds if the first argument is not equivalent to any of the list entries. distinct/1 is defined by recursion
using notin/2 .

distinct([_]).

distinct([H|T]) :- notin(H,T), distinct(T).

Exercise 1.6. We first define retain var(+Var,+VarList,-List) by

retain_var(_,[],[]).

retain_var(V,[H|T],[H|L]) :- H == V, retain_var(V,T,L).

retain_var(V,[H|T],L) :- H \== V, retain_var(V,T,L).

It will be used as an auxiliary predicate where List will contain as many copies of Var as there are in VarList .
For example,

?- retain var(B,[A, B, A, C, B, A],L).

L = [G357, _G357]

Now, count the number of entries in List .

count_var(VarList,Var,Num) :- retain_var(Var,VarList,List),

length(List,Num).

An alternative, more concise (one clause) solution is suggested by the query

?- bagof(E,(member(E,[A, B, A, C, B, A]), E == A), L),

length(L,N).

N = 3

Exercise 1.7. We define zip/3 by recursion.

zip([],_,[]) :- !.

zip(_,[],[]) :- !.

zip([H1|T1],[H2|T2],[(H1,H2)|T]) :- zip(T1,T2,T).

The input lists need not be of the same length in which case the excess tail section of the longer one will be
ignored.

Exercise 1.8. Define total/2 by

total(IntPairs,Total) :- total(IntPairs,0,Total). % clause 0

total([],S,S). % clause 1

total([(X,Y)|T],Acc,S) :- NewAcc is Acc + X * Y, % clause 2

total(T,NewAcc,S).

The corresponding annotated hand computations are shown in Fig. A.1.

Exercise 1.9. We first define write ilist(+Width,+List) by

write_ilist(Width, List) :- length(List,Length),

int_to_atom(Width,WidthA),

concat_atom([’%’,WidthA,’r’],Atom),

repeat(Atom,Length,Format1),

append(Format1,[’]’],Format2),

concat_atom([’[’|Format2],Format),

writef(Format,List).

Download free ebooks at bookboon.com

Applications of Prolog

164

Solutions of Selected Exercises

total([(1,10),(2,100),(3,1000)],Total)
0©

��

total([(1,10),(2,100),(3,1000)],0,Total)
2©

��

total([(2,100),(3,1000)],10,Total)
2©

��

total([(3,1000)],210,Total)
2©

�� total([],3210,Total)
1©

��

Total = 3210
0©

�� success

Figure A.1: Hand Computations for total/2

for displaying an integer list in the right justified fashion. Width takes the number of digits reserved for the
display of each entry. For example,

?- write ilist(8, [12, 345, 6789]).

[12 345 6789]

(repeat/2 has been taken from the solution of Exercise 1.2, p. 161.)
The matrix is finally displayed row-wise by

write_imatrix(Matrix) :- largest(Matrix,Max),

ndigits(Max,ND),

Width is ND + 2,

write_imatrix(Width,M).

using the predicates

• largest(+Matrix,-Max) for calculating the largest entry of Matrix (definition not shown here),

• ndigits/2 for calculating the number of digits of a number is defined in terms of digits/2 by

ndigits(N,ND) :- digits(N,D), length(D,ND).

(digits/2 was defined in Exercise 4.8 of [9, p. 136] to return the list of digits of an integer; see also
[9, pp. 173–174].)

• write imatrix/2 with

write_imatrix(_,[]).

write_imatrix(Width, [H|T]) :- write_ilist(Width, H), nl,

write_imatrix(Width, T).

Exercise 1.10. The completed Table 1.3 is shown as Table A.1. As the full definition of next partition/2

is available in enigma.pl, we want to elaborate on one particular case only, typified by the fifth column in
Table A.1. The Ferrers diagrams of the ‘current’ and ‘next’ partition are shown in Fig. A.2, part (a) and (b),
respectively. We proceed as follows.

Download free ebooks at bookboon.com

Applications of Prolog

165

Solutions of Selected Exercises

Current Partition [234162] [4163] [4352] [13243142]

Next Partition [12224162] [113163] [11314252] [15233142]

Step Used (i) (i) (i) (ii)

Current Partition [155162] [135172] [154351]

Next Partition [214262] [4272] [334251]

Step Used (ii) (ii) (ii)

Table A.1: Partitions

• We unify the current partition’s list representation with [(1,A),(K,1)|T] . (The group of sixes will, since
they remain unchanged, be subsumed in the list’s tail.)

• The total number of marked tokens is A + L . They are to form as many groups of size L - 1 as possible.
The number of them will be computed by integer division (//). The leftovers form the bottom row of the

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

166

Solutions of Selected Exercises

© © © © © ©
© © © © © ©
©× ©× ©× ©× ©×
©×
©×
©×
©×
©×

© © © © © ©
© © © © © ©
©× ©× ©× ©×
©× ©× ©× ©×
©× ©×

(a) (b)

[(1,5),(5,1),(6,2)] [(2,1),(4,2),(6,2)]

Figure A.2: Ferrers Diagrams and their Prolog Representations

new Ferrers diagram. The number of them is the division’s remainder (Prolog’s mod).

• These ideas give rise to the following clause.

next_partition([(1,A),(L,1)|T],[(Rest,1),(NewL,Rat)|T]) :- L > 2,

NewL is L - 1,

Rest is (A + L) mod NewL,

Rest > 0,

Rat is (A + L) // NewL.

Exercise 1.11. Define next int/3 by

next_int(High,I,NextI) :- succ(I,NextI), NextI =< High.

and use it as

?- generator(next int(9),3,I).

I = 3 ;

I = 4 ;

...

I = 9 ;

No

(This is in effect a new implementation of the built-in predicate between/3 [9, p. 41].)

Exercise 1.12. The horizontal and vertical transitions in Fig. 1.6 are encoded by

next_pair((0,0),(0,1)) :- !.

next_pair((0,N),(0,NextN)) :- even(N), succ(N,NextN), !.

next_pair((M,0),(NextM,0)) :- odd(M), succ(M,NextM), !.

where even/1 and odd/1 are respectively defined by

even(N) :- 0 is N mod 2. odd(N) :- 1 is N mod 2.

The built-in conditional ->/2 [9, p. 91] may be used to implement the diagonal transitions in Fig. 1.6.

Download free ebooks at bookboon.com

Applications of Prolog

167

Solutions of Selected Exercises

�

�

�

�

?- current predicate(Pred,), atom prefix(Pred,’temp’).

No

?- tmp predname(Temp), Term =.. [Temp,(I, I)], assert(Term).

Yes

?- current predicate(Pred,), atom prefix(Pred,’temp’).

Pred = temp 0 ;

No

?- tmp predname(Temp), Term =.. [Temp,(I, I)], assert(Term).

Yes

?- current predicate(Pred,), atom prefix(Pred,’temp’).

Pred = temp 1 ;

Pred = temp 0 ;

No

Figure A.3: Creating Distinct Temporary Predicate Names

next_pair((M,N),(NextM,NextN)) :- Sum is M + N,

(odd(Sum) -> succ(M,NextM), succ(NextN,N);

succ(NextM,M), succ(N,NextN)), !.

Pairs starting with (1,1) , say, are generated by

?- generator(next pair,(1,1),P).

P = 1, 1 ;

P = 0, 2 ;

P = 0, 3 ;

P = 1, 2 ;

...

Exercise 1.13. tmp predname/1 returns, each time it is invoked, an atom for naming a temporary predicate.

tmp_predname(Temp) :- int(0,N),

int_to_atom(N,Tag),

concat_atom([’temp_’,Tag],Temp),

not(current_predicate(Temp,_)), !.

The interactive session in Fig. A.3 illustrates how tmp predname/1 may be used to produce predicate names
hitherto not present in the database. (See also inset.) In the definition of the new version of generator/3 ,
its structure is retained except that now the goals (terms) referring to the temporary predicate are constructed
using the built-in predicate univ (=..) [9, p. 43].

Download free ebooks at bookboon.com

Applications of Prolog

168

Solutions of Selected Exercises

Built-in Predicate: atom prefix(+Atom,+Prefix)

Succeeds if the second argument is a Prefix to the Atom in the first argument.
Example:

?- atom prefix(software,soft).

Yes

?- atom prefix(software,war).

No

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

169

Solutions of Selected Exercises

generator2(Pred,From,Elem) :- tmp_predname(TempName),

Term1 =.. [TempName,First,First],

Term2 =.. [TempName,Last,E],

Term3 =.. [TempName,New,E],

Term4 =.. [TempName,From,Elem],

assert(Term1),

assert(Term2 :- (call(Pred,Last,New), Term3)),

write(’Defined ’),

write(TempName),

write(’/2 in the database.\n’),

Term4.

(Lines reporting new predicates’ names have been included.) We now use the new version of generator/3 to
define a new version of pairs/1 by

pairs2((I,J)) :- generator2(succ,0,Sum),

generator2(next_int(Sum),0,I),

J is Sum - I.

It will behave on backtracking as intended:

?- pairs2(P).

Defined temp_0/2 in the database.

Defined temp_1/2 in the database.

P = 0, 0 ;

Defined temp_2/2 in the database.

P = 0, 1 ;

P = 1, 0 ;

Defined temp_3/2 in the database.

P = 0, 2 ;

P = 1, 1 ;

...

We may wish to remove all unwanted temporary predicates from the database. This is accomplished by the
following failure driven loop.

?- current predicate(Pred,), atom prefix(Pred,’temp ’), Term =.. [Pred,’ ’,’ ’], retractall(Term), fail.

No

The query below finally confirms that no predicate of arity 2 whose name starts with ‘temp_’ is left in the
database.

?- current predicate(Pred,), atom prefix(Pred,’temp ’), atom concat(Pred,’/2’,P)1, listing(P), fail.

ERROR: No predicates for ‘temp_1/2’

ERROR: No predicates for ‘temp_0/2’

ERROR: No predicates for ‘temp_3/2’

ERROR: No predicates for ‘temp_2/2’

No

Exercise 1.14. Based on the annotated hand computations in Fig. A.4, p. 170, the predicate split/4 is
defined in (P-A.1).

1We have met atom concat/3 in [9, p. 138].

Download free ebooks at bookboon.com

Applications of Prolog

170

Solutions of Selected Exercises

split([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,1),(3,3),(5,1)], [], S)
3©

��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,0),(3,3),(5,1)], [[1,2]], S)
2©

��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(3,3),(5,1)], [[1,2]], S)
3©

��

split([6,7,8,9,10,11,12,13,14,15,16], [(3,2),(5,1)], [[3,4,5], [1,2]], S)
3©

��

split([9,10,11,12,13,14,15,16], [(3,1),(5,1)], [[6,7,8], [3,4,5], [1,2]], S)
3©

��

split([12,13,14,15,16], [(3,0),(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S)
2©

��

split([12,13,14,15,16], [(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S)
3©

��

split([], [(5,0)], [[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S)
1©

��

reverse([[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

S = [[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]] �� success

Figure A.4: Annotated Hand Computations for split/4

�
�
� � � �������	�
�����	���

In Paris or Online
International programs taught by professors and professionals from all over the world

BBA in Global Business
MBA in International Management / International Marketing
DBA in International Business / International Management
MA in International Education
MA in Cross-Cultural Communication
MA in Foreign Languages

Innovative – Practical – Flexible – Affordable

Visit: www.HorizonsUniversity.org
Write: Admissions@horizonsuniversity.org
Call: 01.42.77.20.66 www.HorizonsUniversity.org

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/aea1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

171

Solutions of Selected Exercises

Prolog Code P-A.1: Definition of split/4

1 split([],[(_,0)],Acc,S) :- reverse(Acc,S), !. % clause 1

2 split(L,[(_,0)|T],Acc,S) :- split(L,T,Acc,S). % clause 2

3 split(L,[(K,AlphaK)|T],Acc,S) :- % clause 3

4 AlphaK > 0, %

5 append(L1,L2,L), %

6 length(L1,K), %

7 NewAlphaK is AlphaK - 1, %

8 split(L2,[(K,NewAlphaK)|T],[L1|Acc],S). %

(Notice the concise way L1 is declared to be the front part of L with a specific length.)

A.2 Chapter 2 Exercises

All Prolog source files for Chap. 2 are available in the directory plsearch.

Exercise 2.2, part (a). Add to the database in Fig. 2.2 the facts

connect(u,v). connect(u,w). connect(v,w).

Download free ebooks at bookboon.com

Applications of Prolog

172

Solutions of Selected Exercises

depth first(d,c)
0©

�� dfs loop([d],[],c)
2©

��

dfs loop([e,s,a],[d],c)
2©

�� dfs loop([f,b,s,a],[e,d],c)
2©

��

dfs loop([g,b,s,a],[f,e,d],c)
2©

�� dfs loop([b,s,a],[g,f,e,d],c)
2©

��

dfs loop([c,a,s,a],[b,g,f,e,d],c)
1©

�� success

Figure A.5: Hand Computations for the Query ?- depth first(d,c).

Part (b). The successor nodes used in the hand computations for the query ?- depth first(d,c).

(Fig. A.5) may be gleaned from Fig. 2.4, p. 50. The interactive session in Fig. A.6, p. 173, confirms the hand
computations. The hand computations for the query ?- depth first(u,c). are shown in Fig. A.7, p. 173.
(The tree in Fig. A.8, p. 173, drawn by inspecting the database, may be used to work out successor nodes.)
They are confirmed by the query in Fig. A.9, p. 174. The query in Fig. A.9 illustrates a perhaps unexpected
feature of our implementation: it is possible for a node to be open and closed at the same time. (Algorithm
2.3.2 does not check for this condition.)

Exercise 2.3. We consider two possibilities. The first definition in (P-A.2) uses maplist/3 .

Prolog Code P-A.2: First definition of extend path/3

1 extend_path(Nodes,Path,ExtendedPath) :-

2 maplist(glue(Path),Nodes,ExtendedPath).

3 glue(T,H,[H|T]).

The auxiliary predicate glue/3 in (P-A.2) is for ‘glueing’ head and tail together. (The order of arguments of
glue/3 is chosen so as to facilitate partial application of glue/3 in (P-A.2) by fixing its first argument.) In
(P-A.3) another definition of extend path/3 is shown. It uses recursion.

Prolog Code P-A.3: Second definition of extend path/3

1 extend_path([],_,[]). % clause 1

2 extend_path([Node|Nodes],Path,[[Node|Path]|Extended]) :- % clause 2

3 extend_path(Nodes,Path,Extended). %

We shall be working with (P-A.3) in the main body of the text.

Exercise 2.4. For the new connectivity, add the clause

connect(b,s).

to the file links.pl.
The new version of is path/1 (in the file searchinfo.pl) will be formulated as a negation, i.e.

Download free ebooks at bookboon.com

Applications of Prolog

173

Solutions of Selected Exercises

�

�

�

�

?- consult(df2).

% links compiled into edges 0.00 sec, 1,900 bytes

% df2 compiled 0.05 sec, 3,892 bytes

Yes

?- depth first(d,c).

Open: [d], Closed: []

Node d is being expanded. Successors: [e, s, a]

Open: [e, s, a], Closed: [d]

Node e is being expanded. Successors: [f, b, d]

Open: [f, b, s, a], Closed: [e, d]

Node f is being expanded. Successors: [g, e]

Open: [g, b, s, a], Closed: [f, e, d]

Node g is being expanded. Successors: [f]

Open: [b, s, a], Closed: [g, f, e, d]

Node b is being expanded. Successors: [c, e, a]

Open: [c, a, s, a], Closed: [b, g, f, e, d]

Goal found: c

Yes

Figure A.6: Interactive Session for the Query ?- depth first(d,c).

depth first(u,c)
0©

�� dfs loop([u],[],c)
2©

��

dfs loop([v,w],[u],c)
2©

�� dfs loop([w,w],[v,u],c)
2©

��

dfs loop([w],[w,v,u],c)
2©

�� dfs loop([],[w,w,v,u],c) �� failure

Figure A.7: Hand Computations for the Query ?- depth first(u,c).

w
...

u
...

�
�
�

4
4
4

v

u
...

v
...

	
	
	

4
4
4

w

5
5
5
5

�
�
�
�

u

Figure A.8: Tree for Finding Successor Nodes in the New Component

Download free ebooks at bookboon.com

Applications of Prolog

174

Solutions of Selected Exercises

�

�

�

�

?- depth first(u,c).

Open: [u], Closed: []

Node u is being expanded. Successors: [v, w]

Open: [v, w], Closed: [u]

Node v is being expanded. Successors: [w, u]

Open: [w, w], Closed: [v, u]

Node w is being expanded. Successors: [u, v]

Open: [w], Closed: [w, v, u]

Node w is being expanded. Successors: [u, v]

Open: [], Closed: [w, w, v, u]

No

Figure A.9: Interactive Session for the Query ?- depth first(u,c).

is_path(L) :- not(prohibit(L)).

with prohibit/1 specifying the conditions which a path must not have.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

175

Solutions of Selected Exercises

Example Path Prolog Clause

� ��
��

�/

�
���

n2 n1

n3

· · ·
same([N1,N2,N3,N1,N2|]).

� ��
�

�

�

�
�

�
��

n2 n1

n4n3

· · ·
same([N1,N2,N3,N4,N1,N2|]).

Table A.2: Example Paths and Prolog Implementations – Case One

• Not allowed is a path whose leading edge is the same as some other edge in its tail (see Table A.2). This
condition is implemented by

same([N1,N2,_,N1,N2|_]).

same([N1,N2,_|T]) :- same([N1,N2|T]).

• Not allowed is a path whose leading edge is opposite to some other edge in its tail (see Table A.3). This
condition is implemented by

opposite([N1,_,N1|_]).

opposite([N1,N2,_,_,N2,N1|_]).

opposite([N1,N2,N3,N4,_|T]) :- opposite([N1,N2,N3,N4|T]).

It is seen by an inductive argument that if the above two conditions are observed, no path with repeated edges
will ever be constructed by the search algorithm. Concentrating on the leading edge therefore does not pose a
restriction but simplifies the implementation. Define now prohibit/1 in searchinfo.pl by

prohibit(L) :- same(L).

prohibit(L) :- opposite(L).

The new version of depth first/4 will behave as illustrated in Fig. A.10, p. 176.

Exercise 2.5. The new version will be placed in the same file as the old one (viz df.pl). We start by defining
a new version of extend path/3 , called extend path dl/3 , as shown in Fig. A.11, p. 177.

This is a straightforward ‘translation’ of extend path/3 and it behaves as follows,

?- extend path dl([f,d],[e,b,a,s],L3-L1).

L3 = [[f, e, b, a, s], [d, e, b, a, s]| G361]

L1 = G361 ;

No

Download free ebooks at bookboon.com

Applications of Prolog

176

Solutions of Selected Exercises

Example Path Prolog Clause

� �� ���
n1 n2

· · ·
opposite([N1,N2,N1|]).

� �� �

��
�/

�
����

n1 n2 n4

n3

· · ·
opposite([N1,N2,N3,N4,N2,N1|]).

� �� �

�

�

�

�
��

�
��

n1 n2 n5

n4n3

· · ·
opposite([N1,N2,N3,N4,N5,N2,N1|]).

Table A.3: Example Paths and Prolog Implementations – Case Two

�

�

�

�

?- consult(df4).

% links compiled into edges 0.00 sec, 1,964 bytes

% searchinfo compiled into info 0.00 sec, 2,120 bytes

% df4 compiled 0.05 sec, 6,272 bytes

Yes

?- depth first(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, b, s, d, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, a, d, s, b, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

Path = [s, d, a, s, b, e, f, g] ;

Path = [s, b, e, f, g] ;

Path = [s, b, a, d, e, f, g] ;

Path = [s, b, a, s, d, e, f, g] ;

No

Figure A.10: Sample Session for depth first/4

Download free ebooks at bookboon.com

Applications of Prolog

177

Solutions of Selected Exercises

extend path dl([], ,E-E).

extend path dl([N|Ns],Path,[[N|Path]|E1]-E2) :-

extend path dl(Ns,Path,E1-E2).

Figure A.11: Definition of extend path dl/3

In the same fashion, direct translation of the two clauses of dfs loop/4 from Fig. 2.15, p. 65, gives the clauses
shown in Fig. A.12, p. 178. (Notice that, as intended, the append goal has been dispensed with. Also notice
that the new clauses won’t interfere with the old ones and we may place them in the same file.) Fig. A.13,
p. 178, illustrates the updating of the agenda by this new version of dfs loop/4 .

The new version of depth first/4 is shown in (P-A.4).

Prolog Code P-A.4: Definition of depth first dl/4

1 depth_first_dl(Start,G_Pred,C_Pred,PathFound) :-

2 dfs_loop([[Start]|L]-L,G_Pred,C_Pred,PathFoundRev),

3 reverse(PathFoundRev,PathFound).

www.simcorp.com

MITIGATE RISK REDUCE COST ENABLE GROWTH

The financial industry needs a strong software platform
That’s why we need you

SimCorp is a leading provider of software solutions for the financial industry. We work together to reach a common goal: to help our clients

succeed by providing a strong, scalable IT platform that enables growth, while mitigating risk and reducing cost. At SimCorp, we value

commitment and enable you to make the most of your ambitions and potential.

Are you among the best qualified in finance, economics, IT or mathematics?

Find your next challenge at
www.simcorp.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/67a2fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

178

Solutions of Selected Exercises

�

�

�

�
�

�
�LIFO updating

of the agenda

dfs loop([Path|]- ,G Pred, ,Path) :- call(G Pred,Path).

dfs loop([[CurrNode|T]|L1]-L2︸ ︷︷ ︸,G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path dl(Nodes,[CurrNode|T],
︷ ︸︸ ︷
L3-L1),

dfs loop(
︷ ︸︸ ︷
L3-L2,G Pred,C Pred,PathFound).

Figure A.12: New Clauses for dfs loop/4

[e|[b,a,s]] · · ·

L2︷ ︸︸ ︷
Old Agenda: [[e|T]|L1] - L2︷ ︸︸ ︷

︸ ︷︷ ︸
L1

T︷ ︸︸ ︷

[f|[e|T]] [d|[e|T]]

Extended Paths: L3 - L1︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
New Agenda: L3 - L2︸ ︷︷ ︸

L3

Figure A.13: Updating of the Agenda by dfs loop/4

Download free ebooks at bookboon.com

Applications of Prolog

179

Solutions of Selected Exercises

It is seen that on backtracking depth first/4 does not quite behave as expected:

?- depth first dl(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

Path = [g] ;

Path = [_G2571, g] ;

...

What is the explanation for the spurious solutions and non-termination, and, what is the remedy? The search
should finish once the agenda is empty. In the old version based on ordinary lists, dfs loop/4 terminates by
failure if its first argument is unified with the empty list:

?- dfs loop([],goal path,link,Path).

No

As L-L stands for the empty list, the corresponding query would be

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

180

Solutions of Selected Exercises

?- dfs loop(L-L,goal path,link,Path).

L = [[g| G415]| G412]

Path = [g| G415] ;

...

It succeeds, however. To prevent this from happening, we add in front of all other clauses of dfs loop/4 to
the database the clause

dfs_loop(L-L,_,_,_) :- !, fail.

upon which, as expected, the above query will fail:

?- dfs loop(L-L,goal path,link,Path).

No

Unfortunately, though, depth first dl/4 now always fails:

?- depth first dl(s,goal path,link,Path).

No

To see why, we first rewrite the new clause in the form

dfs_loop(A-A, B, C, D) :- !, fail.

The last query tries first to satisfy the subgoal

dfs loop([[Start]|L]-L,G Pred,C Pred,PathFoundRev)

with Start = s , G Pred = goal path , C Pred = link and PathFoundRev = Path . The added new clause will
now be tried first. In particular, it will be attempted to unify its first argument with [[s]|L]-L . Unification
should not succeed simply because [[s]|L]-L does not stand for the empty list. Let’s explore interactively
what really happens:

?- A-A = [[s]|L]-L.

A = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

L = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

Yes

It is seen that matching succeeds because Prolog does not check whether unification will give rise to an infinite
term (due to the same variable occurring in both terms to be unified).2 Unification of these terms will fail,
however, if we use unify with occurs check/2 , an SWI–Prolog implementation of full unification:

?- unify with occurs check(A-A,[[s]|L]-L).

No

2In the above query, essentially, unification of [[s]|L] and L is attempted. This should fail. However, without an occurs check

Prolog reports success:

?- [[s]|L] = L.

L = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

Yes

Download free ebooks at bookboon.com

Applications of Prolog

181

Solutions of Selected Exercises

Built-in Predicate: unify with occurs check(?Term1,?Term2)

Unifies the two terms Term1 and Term2 just as =/2 would do. If, however,
using =/2 would give rise to an infinite term, unify with occurs check/2 will
fail. Example:

?- unify with occurs check(f(X,a),f(a,X)).

X = a

Yes

?- X = f(X).

X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Yes

?- unify with occurs check(X,f(X)).

No

In the added clause (P-A.5), this implementation of unification is therefore used.

Prolog Code P-A.5: Additional clause of dfs loop/4

1 dfs loop(L1-L2, , ,) :- unify with occurs check(L1,L2), !, fail.

Prolog now responds as expected:

?- consult(df).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

Warning: (c:/prolog/plsearch/df.pl:34):

Clauses of dfs loop/4 are not together in the source-file3

% df compiled 0.00 sec, 6,272 bytes

Yes

?- depth first dl(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

The only drawback of unify with occurs check/2 is that it is computationally more expensive than the
predicate =/2 .

The computational advantage of the difference list based version is confirmed by

?- time(findall(P,depth first_dl(s,goal path,link, P), Ps)).

% 1,293 inferences in 0.00 seconds (Infinite Lips)

Yes

?- time(findall(P,depth first(s,goal path,link, P), Ps)).

% 1,414 inferences in 0.06 seconds (23567 Lips)

Yes

3To suppress this warning message, place the directive

:- discontiguous dfs loop/4.

just after the use module directives in df.pl.

Download free ebooks at bookboon.com

Applications of Prolog

182

Solutions of Selected Exercises

�

�

�

�
�

�
�FIFO updating

of the agenda

⎫⎬
⎭

�
�

�
�Copied from the augmented version of df.pl

(Exercise 2.5, Fig. A.11, p. 177)

�

:- discontiguous dfs loop/4.

...

breadth first dl(Start,G Pred,C Pred,PathFound) :-

bfs loop([[Start]|L]-L,G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

bfs loop(L1-L2, , ,) :- unify with occurs check(L1,L2), !, fail.

bfs loop([Path|]- ,G Pred, ,Path) :- call(G Pred,Path).

bfs loop([[CurrNode|T]|L1]-L2︸ ︷︷ ︸,G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path dl(Nodes,[CurrNode|T],
︷ ︸︸ ︷
L2-L3),

bfs loop(
︷ ︸︸ ︷
L1-L3,G Pred,C Pred,PathFound).

% auxiliary predicates ...

...

extend path dl([], ,E-E).

extend path dl([N|Ns],Path,[[N|Path]|E1]-E2) :-

extend path dl(Ns,Path,E1-E2).

Figure A.14: Clauses Added to bf.pl

Exercise 2.6. The clauses added to bf.pl are shown in Fig. A.14. The new version responds as intended:

?- breadth first dl(s,goal path,link,Path).

Path = [s, d, e, f, g] ;

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

And, it performs better than the old one:

?- time(findall(P,breadth first dl(s,goal path,link, P), Ps)).

% 1,293 inferences in 0.00 seconds (Infinite Lips)

Yes

?- time(findall(P,breadth first(s,goal path,link, P), Ps)).

% 1,378 inferences in 0.00 seconds (Infinite Lips)

Yes

Exercise 2.7. See Fig. A.15.

Download free ebooks at bookboon.com

Applications of Prolog

183

Solutions of Selected Exercises

⎫⎬
⎭ #

$
%
&

New goals
due to the
presence of
the horizon

�

⎫⎬
⎭�

}
�
�

�
�Clause essentially as

in Fig. 2.15, p. 65

�b dfs loop([Path|],G Pred, , ,Path) :- call(G Pred,Path).

b dfs loop([[CurrNode|T]|Others],G Pred,C Pred,Hor,PathFound) :-

length([CurrNode|T],ListLength),

PathLength is ListLength - 1,

PathLength < Hor,

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

b dfs loop(NewOpenPaths,G Pred,C Pred,Hor,PathFound).

b dfs loop([[CurrNode|T]|Others],G Pred,C Pred,Hor,PathFound) :-

length([CurrNode|T],ListLength),

PathLength is ListLength - 1,

PathLength >= Hor,

b dfs loop(Others,G Pred,C Pred,Hor,PathFound).

Figure A.15: Definition of b dfs loop/5 (Exercise 2.7)

Challenging? Not challenging? Try more

Try this...

www.alloptions.nl/life

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

184

Solutions of Selected Exercises

} �
�

�
�Declare lastdepth/1

to be dynamic
�

} �
�

�
�Initialize saved value

of horizon to zero
�

} �
�

�
�Saving old value of

horizon
�

:- use module(bdf).

:- dynamic(lastdepth/1).

iterative deepening(Start,G Pred,C Pred,PathFound) :-

retractall(lastdepth()),

assert(lastdepth(0)),

iterative deepening aux(1,Start,G Pred,C Pred,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

bounded df(Start,G Pred,C Pred,Depth,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

retractall(lastdepth()),

assert(lastdepth(Depth)),

NewDepth is Depth + 1,

iterative deepening aux(NewDepth,Start,G Pred,C Pred,PathFound).

Figure A.16: Modified Version of iterd.pl (Exercise 2.8)

Exercise 2.8. We add four new goals to the first clause of b dfs loop/5 ; this is shown in (P-A.6).

Prolog Code P-A.6: Modified first clause of b dfs loop/5

1 b_dfs_loop([Path|_],G_Pred,_,_,Path) :- call(G_Pred,Path),

2 lastdepth(LastDepth),

3 length(Path,ListLength),

4 PathLength is ListLength - 1,

5 PathLength > LastDepth.

Furthermore, we need to modify iterd.pl which is shown in Fig. A.16.

Exercise 2.9. To have a unique solution, add the cut (!) in the definition of iterative deepening/4 as
follows.

iterative_deepening(Start,G_Pred,C_Pred,PathFound) :-

iterative_deepening_aux(1,Start,G_Pred,C_Pred,PathFound), !.

Exercise 2.14. Let us assume that we have consulted loop puzzle1a.pl; then, automated.pl will also be
loaded. The predicate segment/1 may be defined interactively by
?- consult(user).

|: segment(S) :- (circle(P); sharp(P)), link([P],S).

|:
�� ��Ctrl +
�� ��D

% user compiled 61.14 sec, 332 bytes

Yes

It will generate all segments for the particular problem:

?- segment(S).

S = [pos(2,1), pos(1,1), pos(1,2), pos(1,3)] ;

Download free ebooks at bookboon.com

Applications of Prolog

185

Solutions of Selected Exercises

S = [pos(2,2), pos(1,2), pos(1,3)] ;

...

All pairs of linked segments may be generated thus

?- segment(S1), link(S1,S2).

S1 = [pos(2,1), pos(1,1), pos(1,2), pos(1,3)] S2 = [pos(2,2)] ;

...

This generator may be used to define a new version of link/2 by facts . (We can do this because the network
and therefore the number of facts is finite.) We do this by a failure driven loop:

?- segment(S1), link(S1,S2), assert(newlink(S1,S2)), fail.

No

?- listing(newlink).

newlink([pos(2,1), pos(1,1), pos(1,2), pos(1,3)], [pos(2,2)]).

...

Use now newlink/2 as you would use link/2 .
The number of nodes and number of directed edges are respectively found by

?- setof(S,segment(S), Ss), length(Ss,L).

L = 37

?- setof((S1, S2),newlink(S1, S2), Ps), length(Ps,L).

L = 99

To find out the corresponding quantities for the ‘hand-knit’ solution, we first consult the file hand knit.pl.
Then, we enter the marks’ positions in the database, followed by a definition of segment/1 as before:
?- consult(user).

|: circle(pos(1,4)). circle(pos(3,5)).

|: circle(pos(4,2)). circle(pos(6,6)).

|: sharp(pos(1,6)). sharp(pos(2,1)). sharp(pos(2,2)).

|: sharp(pos(4,1)). sharp(pos(5,5)).

|: segment(S) :- (circle(P); sharp(P)), link([P],S).

|:
�� ��Ctrl +
�� ��D

% user compiled 0.03 sec, 1,256 bytes

Yes

Whereas the number of nodes is confirmed to be 37 by exactly the same query as before, the number of edges
is now found by

?- setof((S1, S2),(segment(S1),link(S1, S2)), Ps),

length(Ps,L). 4

L = 166

Exercise 2.19. The additional constraint requires that the length of the goal path be equal to the number of
positions on the board – the board size. Since paths are represented as lists of segments, which themselves are
lists of board positions, the path length will be the length of the path’s flattened list representation. This is im-
plemented in (P-A.7) by adding four new goals to the definition of goal path/1 . (The predicate goal path/1

4Here we have explicitly to specify S1 to be a segment as link/2 has been defined in hand knit.pl by us-
ing the wilde card () in its first argument. Failing to do so would instantiate S1 to the wildcard, return-
ing an erroneous value for the number of network connections which, incidentally, would be the number of facts defin-
ing link/2 in hand knit.pl.

Download free ebooks at bookboon.com

Applications of Prolog

186

Solutions of Selected Exercises

is defined in loops.pl.)

Prolog Code P-A.7: Augmented definition of goal path/1

1 goal_path([H|T]) :- number_of_marks(M),

2 length([H|T],M),

3 last(E,T),

4 link(H,E),

5 size(Row,Col), % added goal

6 Size is Row * Col, % added goal

7 flatten([H|T],F), % added goal

8 length(F,Size). % added goal

A.3 Chapter 3 Exercises

All Prolog source files for Chap. 3 are available in the directory plsearch.
Exercise 3.2. Manual solution. We get the straight line distances from any node to node 10 by Pythagoras
(Table A.4). The edge lengths for Fig. 3.4, shown in Table A.5, are obtained from the node co-ordinates in
Table 3.2.

Stand out from the crowd
Designed for graduates with less than one year of full-time postgraduate work
experience, London Business School’s Masters in Management will expand your
thinking and provide you with the foundations for a successful career in business.

The programme is developed in consultation with recruiters to provide you with
the key skills that top employers demand. Through 11 months of full-time study,
you will gain the business knowledge and capabilities to increase your career
choices and stand out from the crowd.

Applications are now open for entry in September 2011.

For more information visit www.london.edu/mim/
email mim@london.edu or call +44 (0)20 7000 7573

Masters in Management

London Business School
Regent’s Park
London NW1 4SA
United Kingdom
Tel +44 (0)20 7000 7573
Email mim@london.edu
www.london.edu/mim/

Fast-track
your career

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/eba1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

187

Solutions of Selected Exercises

Node 1 2 3 4 5 6 7 8 9
Distance to node 10 4.00 4.24 5.83 2.00 2.24 5.39 3.16 1.41 5.10

Table A.4: Values of H

– – – – – – 4 2 6 10
– – – – 5 1 – – 9
– – – – 1 5 – 8
– – – 4 – – 7
– 3 1 – – 6
– 3 5 – 5
– 4 6 4
6 – 3
4 2
1

Table A.5: Distances between Nodes (Edge Lengths) in Fig. 3.4

The hand computations in Fig. A.18, p. 189, tell us that the shortest route is

1 → 2 → 5 → 8 → 10

and its length is 10.
Prolog implementation. We define in graph b.pl the predicates link/2 and in/3 with obvious meanings.

link(1,2). link(1,3). ...

in(1,1,4). in(2,2,7). ...

The heuristic is the Euclidean distance, defined by e cost/3 in (P-A.8).

Prolog Code P-A.8: Definition of e cost/3

1 e_cost(Node,Goal,D) :- in(Node,X1,Y1),

2 in(Goal,X2,Y2),

3 D is sqrt((X1 - X2)^2 + (Y1 - Y2)^2).

The edge costs are calculated by the city block distance, defined by edge cost/3 in (P-A.9).

Prolog Code P-A.9: Definition of e cost/3

1 edge_cost(Node1,Node2,Cost) :- link(Node1,Node2),

2 in(Node1,X1,Y1),

3 in(Node2,X2,Y2),

4 Cost is abs(X1 - X2) + abs(Y1 - Y2).

Download free ebooks at bookboon.com

Applications of Prolog

188

Solutions of Selected Exercises

�

�

�

�

?- consult(graph b).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% graph b compiled 0.00 sec, 14,800 bytes

Yes

?- path.

Select start node 1, ..., 10: 1.

Select goal node 1, ..., 10: 10.

Select algorithm (a/ida/idaeps)... a.

% 561 inferences in 0.00 seconds (Infinite Lips)

Solution in 4 steps.

1 -> 2 -> 5 -> 8 -> 10

Total cost: 10

Yes

Figure A.17: Automated Search

The remaining predicates are adopted from graph a.pl with minor modifications. Fig. A.17 shows the auto-
mated search.

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

189

Solutions of Selected Exercises

[4.00-[1]-0]
1©

��

[8.24-[2,1]-4, 11.83-[3,1]-6]
2©

��

[8.24-[2,1]-4, 11.83-[3,1]-6]
1©

��

[10-[4,2,1]-8, 9.24-[5,2,1]-7, 12.39-[6,2,1]-7, 11.83-[3,1]-6]
2©

��

[9.24-[5,2,1]-7, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7]
1©

��

[9.41-[8,5,2,1]-8, 17.10-[9,5,2,1]-12, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7]
2©

��

[9.41-[8,5,2,1]-8, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
1©

��

[10.00-[10,8,5,2,1]-10, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
2©

��

[10.00-[10,8,5,2,1]-10, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
3©

�� success

Figure A.18: Hand Computations: The Evolution of the Agenda for the A–Algorithm (from node 1 to node 10 in Fig 3.4)

Download free ebooks at bookboon.com

Applications of Prolog

190

Solutions of Selected Exercises

Exercise 3.3, part (c). We search the network in Fig. 3.6 by the interactive session in Fig. A.19.5

�

�

�

�

?- consult(graph c).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% graph c compiled 0.00 sec, 31,068 bytes

Yes

?- adj(2, A), co ord(2, Co), path(A, Co).

Select start node 1, ..., 26: 1.

Select goal node 1, ..., 26: 26.

Select algorithm (a/ida/idaeps)... a.

% 74,926 inferences in 0.02 seconds (4795264 Lips)

Solution in 11 steps.

1 -> 2 -> 5 -> 7 -> 9 -> 11 -> 15 -> 16 -> 18 -> 21 -> 24 -> 26

Total cost: 54

Yes

Figure A.19: Interactive Session for Searching the Network in Fig. 3.6

Exercise 3.6. Table A.6 shows that Hill Climbing and Best First, save for the simplest of cases, do not find the
shortest route to the goal node. It is also seen that Best First usually finds a shorter route to the goal node but

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

mp
hc 8 84 954 2200 445 444 442 348 1002 730

Number
bestf 8 38 262 - 91 90 88 196 - 234

of

mh
hc 8 8 90 112 339 338 336 406 126 528

Moves
bestf 8 8 10 32 45 44 42 66 74 132

Table A.6: Results for the Eight Puzzle (Hill Climbing and Best First)

at a much higher computational cost than Hill Climbing. Finally, the better heuristic (MH) is seen to deliver
better solutions throughout. (Cases which could not be finished due to prohibitively long CPU times are not
shown here.)

Exercise 3.11. Modify the clauses of a loop/3 and dfs contour loop/6 by replacing each occurrence of the
goal

findall(Node,(member(Node,SuccNodes),not(member(Node,T))),Nodes)

by

findall(Node,member(Node,SuccNodes),Nodes)

(The modified code is in msearches.pl.) Thus, for example, the gain in CPU time is 17% for case 4 with
Iterative Deepening A∗ and the Euclidean heuristics.

5The present search problem happens also to be of the type considered in Sect. 3.4. The result in Fig. A.19 is confirmed by
Fig. 3.10, p. 122.

Download free ebooks at bookboon.com

Applications of Prolog

191

Solutions of Selected Exercises

A.4 Chapter 4 Exercises

All Prolog source code for Chap. 4 is available in the files sieve.pl and draw.pl. The Linux shell scripts
(S-4.1), p. 141, and (S-A.1), p. 195, are in the files sieve and curves, respectively.

Exercise 4.2. circ command/4 is defined in (P-A.10).

Prolog Code P-A.10: Definition of circ command/4 and Auxiliaries

1 circ(R, X, Y, Alpha, Pair) :-

2 Pi is 3.1415926,

3 Rad is Alpha * Pi / 180,

4 S is sin(Rad),

5 C is cos(Rad),

6 PairX is X + R * C,

7 PairY is Y + R * S,

8 concat atom([’(’,PairX,’,’,PairY,’)’], Pair).

9 circ pairs(R, X, Y, NInt, Pairs) :-

10 mesh(1, NInt, Mesh),

11 maplist(circ(R, X, Y), Mesh, Pairs).

12 circ command(R, X, Y, NInt) :-

13 circ pairs(R, X, Y, NInt, Pairs),

14 concat atom([’\\newcommand{\\defcirc}{\\drawline’|Pairs], Atom),

15 concat atom([Atom,’}’], C),

16 write(C).

Illustration.

1© A counterclockwise rotation by α = 60◦ on a circle of radius r = 10 with centre at (x, y) = (5, 2) maps
the ‘rightmost’ point on the perimeter (15, 2) to (10, 10.6603).

?- circ(10, 5, 2, 0, P).

P = ’(15,2)’

Yes

?- circ(10, 5, 2, 60, P).

P = ’(10.0,10.6603)’

Yes

The output of circ/5 is an atom.

2© A uniformly spaced sequence of points on the circle’s perimeter is generated by circ pairs/5 . For
example, points on the circle in 1© spaced at α = 60◦(= 360◦/6), beginning with (15, 2), are obtained by

?- circ_pairs(10, 5, 2, 6, Pairs).

Pairs = [’(15,2)’, ’(10.0,10.6603)’, ’(3.09401e-07,10.6603)’,

’(-5.0,2.0)’, ’(-6.18802e-07,-6.66025)’, ’(10.0,-6.66025)’, ’(15.0,2.0)’]

Yes

Download free ebooks at bookboon.com

Applications of Prolog

192

Solutions of Selected Exercises

circ pairs/5 uses mesh/3 ((P-4.4), p. 149) as an auxiliary. The output of circ pairs/5 is a list of
atoms. They represent the co-ordinates of the points which will form the vertices of the approximating
polygon. \drawline from epic will be used to connect them.

3© circ command/4 essentially concatenates the list entries from 2© thus

?- circ command(10, 5, 2, 6).

\newcommand{\defcirc}{\drawline(15,2)(10.0,10.6603)(3.09401e-07,10.6603)

(-5.0,2.0)(-6.18802e-07,-6.66025)(10.0,-6.66025)(15.0,2.0)}

Yes

4© The output from 3© is manually adjusted (in an editor) to result in the LATEX definition

\newcommand{\defcirc}{\drawline(15,2)(10.0,10.6603)(3.09401e-07,10.6603)

(-5.0,2.0)(0,-6.66025)(10.0,-6.66025)(15.0,2.0)}

Exercise 4.3. The definition of circ/5 is modified to imp circ/5 as shown in (P-A.11).

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

193

Solutions of Selected Exercises

Prolog Code P-A.11: Definition of imp circ/5

1 imp_circ(R, X, Y, Alpha, Pair) :-

2 Pi is 3.1415926,

3 Rad is Alpha * Pi / 180,

4 S is sin(Rad),

5 C is cos(Rad),

6 PairX is X + R * C,

7 sformat(SPairX, ’~7f’,PairX),

8 PairY is Y + R * S,

9 sformat(SPairY, ’~7f’,PairY),

10 concat_atom([’(’,SPairX,’,’,SPairY,’)’], Pair).

Lines 6-9 in (P-A.11) illustrate the use of sformat/3 ; it unifies the value in floating point notation of a number
with a string. Seven digits are used after the decimal point. The string then can serve as a component in the
list of atoms in the first argument of concat atom/2 .

Rename circ pairs/5 and circ command/4 in (P-A.10) to imp circ pairs/5 and imp circ command/4 ,
respectively, and also change in them all instances of circ... to imp circ... . (These two predicates with
these obvious changes are not shown here.)

Exercise 4.4. The definition of gen command2/6 is shown in (P-A.12).

Prolog Code P-A.12: Definition of gen command2/6

1 gen_mesh(Lower, Upper, NInt, Mesh) :-

2 Lower < Upper,

3 integer(NInt), NInt > 0,

4 gen_mesh(Lower, Upper, NInt, NInt, Mesh, []), !.

5 gen_mesh(Lower, _, _, 0, [Lower|Acc], Acc).

6 gen_mesh(Lower, Upper, NInt, NumInt, List, Acc) :-

7 H is Lower + NumInt * (Upper - Lower) / NInt,

8 NewNumInt is NumInt - 1,

9 gen_mesh(Lower, Upper, NInt, NewNumInt, List, [H|Acc]).

10 applic(Fun, Pars, Argument, Outcome) :- append(Pars, [Argument], List),

11 append(List, [Outcome], Args),

12 apply(Fun, Args).

13 gen_vals(Fun, Lower, Upper, NInt, Pars, Vals) :-

14 gen_mesh(Lower, Upper, NInt, Mesh),

15 maplist(applic(Fun, Pars), Mesh, Vals).

16 gen_command2(CName, Fun, Lower, Upper, NInt, Pars) :-

17 gen_vals(Fun, Lower, Upper, NInt, Pars, Vals),

18 concat_atom([’\\newcommand{’, CName, ’}{\\drawline’|Vals], Atom),

19 concat_atom([Atom,’}’], Command),

20 write(Command).

gen mesh/4 is defined by the accumulator technique using gen mesh/6 . In applic/4 , first the argument list
of apply/2 is assembled by list concatenation and then apply/2 is called. The remaining two predicates are

Download free ebooks at bookboon.com

Applications of Prolog

194

Solutions of Selected Exercises

easily understood.

Exercise 4.5. The definition of log spiral/5 is shown in (P-A.13).

Prolog Code P-A.13: Definition of log spiral/5

1 log_spiral(Alpha, CentreX, CentreY, RotAngle, Pair) :-

2 Pi is 3.1415926,

3 RadA is Alpha * Pi / 180,

4 SA is sin(RadA),

5 CA is cos(RadA),

6 K is CA/SA,

7 Phi is RotAngle * Pi / 180,

8 R is exp(K * Phi),

9 PairX is CentreX + R * cos(Phi),

10 sformat(SPairX, ’~7f’,PairX),

11 PairY is CentreY + R * sin(Phi),

12 sformat(SPairY, ’~7f’,PairY),

13 concat_atom([’(’,SPairX,’,’,SPairY,’)’], Pair).

Notice that the pattern set by (P A.11), p. 193, (the definition of the improved circle imp circ/5) is broadly
followed here. This applies in particular to the use of sformat/3 for achieving a floating point representation
of the points’ co-ordinates. (As before, seven digits are used after the comma.)

Exercise 4.6. The definition of curves/2 is shown in (P-A.14).

Prolog Code P-A.14: Definition of curves/2

1 curves(InFile, OutFile) :- see(InFile),

2 tell(OutFile),

3 execute,

4 seen,

5 told.

6 execute :- get_line(L),

7 ((L = [’\n’], execute);

8 (L = [’%’|_], copy_comment(L), execute);

9 (L = [end_of_file], true);

10 (exec_line(L), execute)).

11 copy_comment(List) :- atom_chars(Atom,List),

12 write(Atom).

13 exec_line(Line) :- atom_chars(A,Line),

14 term_to_atom(T,A),

15 apply(T,[]),

16 write(’\n’).

Notice that the execute/0 in (P-A.14) uses the predicate get line/1 defined in (P-4.2), p. 137. This predicate

Download free ebooks at bookboon.com

Applications of Prolog

195

Solutions of Selected Exercises

reads from a file the next line as a list of characters.

Exercise 4.7. The definition of the shell script curves is shown in (S-A.1). It uses the temporary file temp

for communicating the two filenames to the Prolog predicate curves/2 . (This construct has been seen before
in Sect. 4.1.4.)

Linux Shell Script S-A.1: curves

1 #!/bin/bash

2 if [$# -ne 2]; then

3 echo "Error: supply two arguments"

4 else

5 if [-e $1]; then

6 echo $1 > temp

7 echo $2 >> temp

8 #

9 pl -f draw.pl -g go -t halt

10 #

11 echo "Input file : ’$1’"

12 echo "Output file: ’$2’"

13 echo "LaTeX source ’$2’ created"

14 #

15 rm temp

16 else

17 echo "Error: file ’$1’ does not exist"

18 fi

19 fi

It calls go/0 (a predicate in draw.pl) which then uses curves/2 from Exercise 4.6; go/0 is defined in (P-A.15).

Prolog Code P-A.15: Definition of go/0

1 go :- see(temp),

2 get_string(InFile),

3 get_string(OutFile),

4 curves(InFile, OutFile).

5 %

6 % auxiliary predicate get_string/1 uses get_line/1 from (P-4.2), p. 137

7 %

8 get_string(String) :- get_line(List),

9 append(ShortList, [’\n’],List),

10 atom_chars(String, ShortList).

The auxiliary predicate get string/1 in (P-A.15) uses get line/1 , known from (P-4.2), p. 137.

Download free ebooks at bookboon.com

Applications of Prolog

196

Solutions of Selected Exercises

your chance
to change
the world
Here at Ericsson we have a deep rooted belief that
the innovations we make on a daily basis can have a
profound effect on making the world a better place
for people, business and society. Join us.

In Germany we are especially looking for graduates
as Integration Engineers for
•	 Radio Access and IP Networks
•	 IMS and IPTV

We are looking forward to getting your application!
To apply and for all current job openings please visit
our web page: www.ericsson.com/careers

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/11a3fd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

197

Software

Appendix B

Software

Below are listed all the filesnames referenced in this book. The files are available on the Ventus website.

Referred to in Chap. 1

Prolog Source

enigma.pl

Referred to in Chap. 2

Prolog Source

automated.pl, bf.pl, bdf.pl, df.pl, df1.pl, df2.pl, df3.pl, df4.pl, blindsearches.pl, board.pl,

eight_links.pl, eight_puzzle.pl, hand_knit.pl, iterd.pl, kinks.pl, kinks1.pl, kinks2.pl,

kinks3.pl, kinks4.pl, kinks5.pl, links.pl, loop_puzzle1.pl, loop_puzzle1a.pl, loop_puzzle2.pl,

loops.pl, naive.pl, netsearch.pl, searchinfo.pl, small_board.pl, straightloop.pl,

straightloop1.pl, straightloop2.pl, straightloop3.pl

Referred to in Chap. 3

Prolog Source

asearches.pl, bsearches.pl, eight_puzzle_a.pl, eight_puzzle_b.pl, floorplan.pl, graph_a.pl,

graph_b.pl, graph_c.pl, links.pl, knight.pl, maze.pl, maze_disp.pl, robot.pl, rsearches.pl,

tedious.pl

Referred to in Chap. 4

Prolog Source

draw.pl, sieve.pl

LATEX Source

exam.tex, part.tex, part_sln.tex, spirals.tex

Download free ebooks at bookboon.com

Applications of Prolog

198

Software

Shell Script

sieve, curves

Other Files

spirals, without_waters, with_waters

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/9b9dfd82-96d7-e011-adca-22a08ed629e5

Download free ebooks at bookboon.com

Applications of Prolog

199

References

References

[1] K. Austin. Enigma 1225: Rows are columns. New Scientist, pages 55–55, 2003. February 8, 2003.

[2] H.-J. Bartsch. Handbook of Mathematical Formulas. Academic Press, New York, 1974.

[3] N. L. Biggs. Discrete Mathematics. Clarendon Press, Oxford, 1989.

[4] H. Cambazard, B. O’Sullivan, and B.M. Smith. A constraint-based approach to enigma 1225. Computers
and Mathematics with Applications, 58:1487–1497, 2009.

[5] W. F. Clocksin. Clause and Effect – Prolog Programming for the Working Programmer. Springer, London,
1997.

[6] M. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth. Prentice Hall, Upper Saddle
River, NJ, 1997.

[7] A. Csenki. Enigma 1225: Prolog-assisted solution of a puzzle using discrete mathematics. Computers and
Mathematics with Applications, 52:383–400, 2006.

[8] A. Csenki. Rotations in the plane and Prolog. Science of Computer Programming, 66:154–161, 2007.

[9] A. Csenki. Prolog Techniques. Ventus Publishing ApS, Copenhagen, 2009.
http://www.bookboon.com/uk/student/it/.

[10] I. Fekete, T. Gregorics, and S. Nagy. Bevezetés a Mesterséges Intelligenciába (Introduction to Artificial
Intelligence). LSI Oktatóközpont a Mikroelektrónika Kultúrájáért Alaṕıtvány, Budapest, 1990.

[11] M. Fogiel. Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Graphs, Transforms.
Research and Education Association, New York, 1984.

[12] C. Fox, S. Danicic, M. Harman, and R. M. Hierons. ConSIT: a fully automated conditioned program
slicer. Software – Practice and Experience, 34:15–46, 2004.

[13] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice–Hall, Englewood Cliffs, NJ, 1963.

[14] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison–Wesley, Reading, Ma, 1994.

[15] W. Jaksch. Künstliche Intelligenz I – Symbolische KI (Artificial Intelligence I – Symbolic AI).
Technical report, University of Erlangen, Erlangen, Germany, 2002.
http://www8.informatik.uni-erlangen.de/IMMD8/Lectures/KI-I/.

Download free ebooks at bookboon.com

Applications of Prolog

200

References

[16] EPS Trade Kft. Egyenes karika (Straight loop). LOGIKOKTÉL, A Hungarian monthly puzzle magazine,
pages 2–2, 2001. Issue 2001/3.

[17] EPS Trade Kft. Fekete–Fehér (Black–White). LOGIKOKTÉL, A Hungarian monthly puzzle magazine,
pages 2–2, 2001. Issue 2001/3.

[18] EPS Trade Kft. Minden második töréspont (Every other kink). LOGIKOKTÉL, A Hungarian monthly
puzzle magazine, pages 10–10, 2002. Issue 2002/8.

[19] R. Knott. Using prolog to animate mathematics. In D. R. Brough, editor, Logic Programming – New
Frontiers. Intellect Books, Oxford, 1992.

[20] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence,
27:97–109, 1985.

[21] R. E. Korf, M. Reids, and S. Edelkamp. Time complexity of iterative-deepening-A∗. Artificial Intelligence,
129:199–218, 2001.

[22] M. McGrath. Linux in Easy Steps. Computer Step, Southam, 2006.

[23] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco, Ca, 1998.

[24] D. S. Parker. Stream data analysis in prolog. In L. Shapiro, editor, The Practice of Prolog. MIT Press,
Cambridge, Ma, 1990.

[25] H.-O. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals – New Frontiers of Science. Springer, New
York, 1992.

[26] K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical Methods for Physics and Engineering. Cambridge
University Press, Cambridge, UK, second edition, 2002.

[27] S. J. Russell and P. Norvig. Artificial Intelligence – A Modern Approach. Prentice Hall, Upper Saddle
River, NJ, 1995.

[28] L. Sterling and E. Shapiro. The Art of Prolog – Advanced Programming Techniques. MIT Press, Cambridge
Ma, London, 1986.

[29] T. Dean T, J. Allen, and Y. Aloimonos. Artificial Intelligence – Theory and Practice. Benjamin/Cummings,
Redwood City Ca., 1995.

[30] S. Thompson. Haskell: The Craft of Functional Programming. Addison–Wesley, Harlow and London and
New York, 1996.

[31] S. Todd. Basic Numerical Mathematics, volume 2. Academic Press, Harlow and London and New York,
1978. Basic Numerical Algebra.

[32] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352–357, 1984.

[33] J. Wielemaker. SWI–Prolog 5.4 Reference Manual. Amsterdam, 2004.
http://www.wsi-prolog.org.

[34] P. H. Winston. Artificial Intelligence. Addison–Wesley, Reading, Ma, third edition, 1992.

Download free ebooks at bookboon.com

Applications of Prolog

201

Index

Index

// , 165
: , 49
==/2 , 24
! , 102
\=/2 , 24
\==/2 , 24

acyclic graph, 128
adjacency matrix, 110
agenda, 54, 105, 108
apply/2 , 155, 159
atom prefix/2 , 168

call/n , 40
Cartesian product, 40
city block distance, 110, 118, 130
conduit model, 52
consult(user)

examples, 88, 108, 159, 184, 185
cut, see !

cycloid, 146–151

dataflow diagram, 27
derangement, 32
difference lists, 67, 68
discontiguous , 181

enumerator, see generator

Ferrers Diagram, 36
formatted output, 152
functional programming, 27, 113

generate-and-test, 17
generator, 37–42
get char/1 , 138

hand computations, 25, 27, 28

Henderson diagram, see dataflow diagram
heuristic, 103

admissible, 105, 114
alternative, 123–125
Euclidean, 123–124
zero, 123, 127

heuristic evaluation function, 104
higher order predicate, 40, 155

int to atom/2 , 30
interactive entry of code, see consult(user)

keysort/2 , 108

last/2 , 28
LATEX, 133–134, 143–160
Linux shell script, 139–145, 159, 195
logarithmic spiral, 156, 194

Manhattan distance, see city block distance
and the eight puzzle, 114

maplist/3 , 150
and functional programming, 27

memoization, 120
Minkowski Inequality, 132
mod , 166
module/2 , see modules
modules, 47–49

partial application, 150, 155, 172
partition of a number

definition of, 33
generating partitions, 35–36

pattern matching, 139
problems for Prolog

LATEX code generation, 146–151
drawing with LATEX, 146–160
eight puzzle, 99–102, 114–118

Download free ebooks at bookboon.com

Applications of Prolog

202

Index

knight, 128–132
loop puzzles, 76–96
maze, 121–128
robot navigation, 118–120
Rows are Columns, 17–46
text removal, 133–145
text retention, 151

relaxed problem, 114
rotation

list rotation, 43
rotation of a cycle, 32

search, 47–128
blind search, 47–102

Bounded Depth First, 68–72
Breadth First, 67–68
Depth First, 52–67
Iterative Deepening, 72–74

informed search, 103–128
A–Algorithm, 105–108
Best First, 118
Hill Climbing, 118
Iterative Deepening A∗, 108–110
Iterative Deepening A∗–ε, 109

search tree, 49
see/1 , 138
seen/0 , 138
sformat/3 , 152, 193, 194
shell script, see Linux shell script
slicing, 133
snd/2

and functional programming, 27
definition of, 25

sort/2 , 25
stream data analysis, 27

tail recursion, 102
text processing, 133–160
Triangle Inequality, 131

unify with occurs check/2 , 181
use module/1 , see modules

writef/2 , 30

zip/3

and functional programming, 27
definition of, 163
specification of, 25

Download free ebooks at bookboon.com

Applications of Prolog

203

Errata to Volume 1

Errata to Volume 1

Correct the following typesetting errors in [9].

• Page 133: remove the fourth line of the second verse, i.e. the line ‘Went to mow a meadow,’.

• Page 183: replace in reference [14] ‘N. J. Nilsson’ by ‘S. J. Russell’.

The author welcomes comments and observations on his Prolog books published by Ventus.

It all starts at Boot Camp. It’s 48 hours
that will stimulate your mind and
enhance your career prospects. You’ll
spend time with other students, top
Accenture Consultants and special
guests. An inspirational two days

packed with intellectual challenges
and activities designed to let you
discover what it really means to be a
high performer in business. We can’t
tell you everything about Boot Camp,
but expect a fast-paced, exhilarating

and intense learning experience.
It could be your toughest test yet,
which is exactly what will make it
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet

Visit accenture.com/bootcamp

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/advert/69a0fd82-96d7-e011-adca-22a08ed629e5

